异构缓存、内存和存储系统的最佳数据放置

Lei Zhang, Reza Karimi, I. Ahmad, Ymir Vigfusson
{"title":"异构缓存、内存和存储系统的最佳数据放置","authors":"Lei Zhang, Reza Karimi, I. Ahmad, Ymir Vigfusson","doi":"10.1145/3393691.3394229","DOIUrl":null,"url":null,"abstract":"New memory technologies are blurring the previously distinctive performance characteristics of adjacent layers in the memory hierarchy. No longer are such layers orders of magnitude different in request latency or capacity. Beyond the traditional single-layer view of caching, we now must re-cast the problem as a data placement challenge: which data should be cached in faster memory if it could instead be served directly from slower memory? We present CHOPT, an offline algorithm for data placement across multiple tiers of memory with asymmetric read and write costs. We show that CHOPT is optimal and can therefore serve as the upper bound of performance gain for any data placement algorithm. We also demonstrate an approximation of CHOPT which makes its execution time for long traces practical using spatial sampling of requests incurring a small 0.2% average error on representative workloads at a sampling ratio of 1%. Our evaluation of CHOPT on more than 30 production traces and benchmarks shows that optimal data placement decisions could improve average request latency by 8.2%-44.8% when compared with the long-established gold standard: Belady and Mattson's offline, evict-farthest-in-the-future optimal algorithms. Our results identify substantial improvement opportunities for future online memory management research.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal Data Placement for Heterogeneous Cache, Memory, and Storage Systems\",\"authors\":\"Lei Zhang, Reza Karimi, I. Ahmad, Ymir Vigfusson\",\"doi\":\"10.1145/3393691.3394229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New memory technologies are blurring the previously distinctive performance characteristics of adjacent layers in the memory hierarchy. No longer are such layers orders of magnitude different in request latency or capacity. Beyond the traditional single-layer view of caching, we now must re-cast the problem as a data placement challenge: which data should be cached in faster memory if it could instead be served directly from slower memory? We present CHOPT, an offline algorithm for data placement across multiple tiers of memory with asymmetric read and write costs. We show that CHOPT is optimal and can therefore serve as the upper bound of performance gain for any data placement algorithm. We also demonstrate an approximation of CHOPT which makes its execution time for long traces practical using spatial sampling of requests incurring a small 0.2% average error on representative workloads at a sampling ratio of 1%. Our evaluation of CHOPT on more than 30 production traces and benchmarks shows that optimal data placement decisions could improve average request latency by 8.2%-44.8% when compared with the long-established gold standard: Belady and Mattson's offline, evict-farthest-in-the-future optimal algorithms. Our results identify substantial improvement opportunities for future online memory management research.\",\"PeriodicalId\":188517,\"journal\":{\"name\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3393691.3394229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

新的记忆体技术模糊了记忆体层级中相邻层先前明显的性能特征。这些层在请求延迟或容量方面不再有数量级的不同。在传统的单层缓存视图之外,我们现在必须将这个问题重新定义为数据放置挑战:如果可以直接从较慢的内存提供服务,哪些数据应该缓存在较快的内存中?我们提出了CHOPT,一种离线算法,用于跨多层内存的数据放置,具有非对称的读写成本。我们证明CHOPT是最优的,因此可以作为任何数据放置算法性能增益的上限。我们还演示了一个近似的CHOPT,它使用请求的空间采样使其长跟踪的执行时间变得可行,在抽样比率为1%的代表性工作负载上产生0.2%的平均误差。我们在30多条生产轨迹和基准上对CHOPT进行了评估,结果表明,与长期建立的黄金标准(Belady和Mattson的离线、最长远的优化算法)相比,最优数据放置决策可以将平均请求延迟提高8.2%-44.8%。我们的结果确定了未来在线内存管理研究的实质性改进机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Data Placement for Heterogeneous Cache, Memory, and Storage Systems
New memory technologies are blurring the previously distinctive performance characteristics of adjacent layers in the memory hierarchy. No longer are such layers orders of magnitude different in request latency or capacity. Beyond the traditional single-layer view of caching, we now must re-cast the problem as a data placement challenge: which data should be cached in faster memory if it could instead be served directly from slower memory? We present CHOPT, an offline algorithm for data placement across multiple tiers of memory with asymmetric read and write costs. We show that CHOPT is optimal and can therefore serve as the upper bound of performance gain for any data placement algorithm. We also demonstrate an approximation of CHOPT which makes its execution time for long traces practical using spatial sampling of requests incurring a small 0.2% average error on representative workloads at a sampling ratio of 1%. Our evaluation of CHOPT on more than 30 production traces and benchmarks shows that optimal data placement decisions could improve average request latency by 8.2%-44.8% when compared with the long-established gold standard: Belady and Mattson's offline, evict-farthest-in-the-future optimal algorithms. Our results identify substantial improvement opportunities for future online memory management research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latency Imbalance Among Internet Load-Balanced Paths: A Cloud-Centric View Fundamental Limits of Approximate Gradient Coding Staleness Control for Edge Data Analytics vrfinder: Finding Outbound Addresses in Traceroute The Great Internet TCP Congestion Control Census
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1