改进的基于功率级差分的双麦克风降噪方案

Shiwei Wang, Xiaohu Hu, C. Zheng, Xiaodong Li
{"title":"改进的基于功率级差分的双麦克风降噪方案","authors":"Shiwei Wang, Xiaohu Hu, C. Zheng, Xiaodong Li","doi":"10.1109/ICICS.2013.6782820","DOIUrl":null,"url":null,"abstract":"This paper studies the performance of the power-level-difference(PLD)-based two-channel noise reduction for dual-microphone headsets by using Monte Carlo simulation method. The analysis results indicate that both the accuracy of the noise power spectral density (NPSD) estimation and the smoothing factor have significant impacts on the amount of noise reduction. Based on these analysis results, a modified PLD-based two-channel noise reduction algorithm is proposed, where two schemes are introduced to improve the performance of the traditional PLD-based algorithm. In the first scheme, a non-stationary noise estimator is proposed to improve the tracking capability of the NPSD estimator. In the second scheme, an adaptive updating smoothing factor (AUSF) is used to reduce the variance of the spectral estimation and increase the amount of noise reduction. Experimental results with recorded data show better performance of the proposed algorithm.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A modified power-level-difference-based noise reduction for dual-microphone headsets\",\"authors\":\"Shiwei Wang, Xiaohu Hu, C. Zheng, Xiaodong Li\",\"doi\":\"10.1109/ICICS.2013.6782820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the performance of the power-level-difference(PLD)-based two-channel noise reduction for dual-microphone headsets by using Monte Carlo simulation method. The analysis results indicate that both the accuracy of the noise power spectral density (NPSD) estimation and the smoothing factor have significant impacts on the amount of noise reduction. Based on these analysis results, a modified PLD-based two-channel noise reduction algorithm is proposed, where two schemes are introduced to improve the performance of the traditional PLD-based algorithm. In the first scheme, a non-stationary noise estimator is proposed to improve the tracking capability of the NPSD estimator. In the second scheme, an adaptive updating smoothing factor (AUSF) is used to reduce the variance of the spectral estimation and increase the amount of noise reduction. Experimental results with recorded data show better performance of the proposed algorithm.\",\"PeriodicalId\":184544,\"journal\":{\"name\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Conference on Information, Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2013.6782820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用蒙特卡罗仿真方法研究了基于功率级差(PLD)的双通道双麦克风耳机降噪性能。分析结果表明,噪声功率谱密度(NPSD)估计的精度和平滑系数对降噪量有显著影响。基于这些分析结果,提出了一种改进的基于pld的双通道降噪算法,其中引入了两种方案来提高传统的基于pld的算法的性能。在第一种方案中,提出了一个非平稳噪声估计器来提高NPSD估计器的跟踪能力。在第二种方案中,采用自适应更新平滑因子(AUSF)来减小谱估计的方差,增加降噪量。实验结果表明,该算法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A modified power-level-difference-based noise reduction for dual-microphone headsets
This paper studies the performance of the power-level-difference(PLD)-based two-channel noise reduction for dual-microphone headsets by using Monte Carlo simulation method. The analysis results indicate that both the accuracy of the noise power spectral density (NPSD) estimation and the smoothing factor have significant impacts on the amount of noise reduction. Based on these analysis results, a modified PLD-based two-channel noise reduction algorithm is proposed, where two schemes are introduced to improve the performance of the traditional PLD-based algorithm. In the first scheme, a non-stationary noise estimator is proposed to improve the tracking capability of the NPSD estimator. In the second scheme, an adaptive updating smoothing factor (AUSF) is used to reduce the variance of the spectral estimation and increase the amount of noise reduction. Experimental results with recorded data show better performance of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cubic-based 3-D localization for wireless sensor networks Using PCA algorithm to refine the results of internet traffic identification Recognizing trees at a distance with discriminative deep feature learning A random increasing sequence hash chain and smart card-based remote user authentication scheme Two dimension nonnegative partial least squares for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1