Ashutosh Gupta, A. Chakraborty, S. Giri, V. Subramanian, P. Chattaraj
{"title":"卤素、硫和氯化芳香族化合物的毒性:数量-结构-毒性关系(QSTR)","authors":"Ashutosh Gupta, A. Chakraborty, S. Giri, V. Subramanian, P. Chattaraj","doi":"10.4018/ijcce.2011010105","DOIUrl":null,"url":null,"abstract":"In this paper, quantitative–structure–toxicity–relationship (QSTR) models are developed for predicting the toxicity of halogen, sulfur and chlorinated aromatic compounds. Two sets of compounds, containing mainly halogen and sulfur inorganic compounds in the first set and chlorinated aromatic compounds in the second, are investigated for their toxicity level with the aid of the conceptual Density Functional Theory (DFT) method. Both sets are tested with the conventional density functional descriptors and with a newly proposed net electrophilicity descriptor. Associated R2, R2CV and R2adj values reveal that in the first set, the proposed net electrophilicity descriptor (??±) provides the best result, whereas in the second set, electrophilicity index (?) and a newly proposed descriptor, net electrophilicity index (??±) provide a comparable performance. The potential of net electrophilicity index to act as descriptor in development of QSAR model is also discussed.","PeriodicalId":132974,"journal":{"name":"Int. J. Chemoinformatics Chem. Eng.","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Toxicity of Halogen, Sulfur and Chlorinated Aromatic Compounds: A Quantitative-Structure-Toxicity-Relationship (QSTR)\",\"authors\":\"Ashutosh Gupta, A. Chakraborty, S. Giri, V. Subramanian, P. Chattaraj\",\"doi\":\"10.4018/ijcce.2011010105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, quantitative–structure–toxicity–relationship (QSTR) models are developed for predicting the toxicity of halogen, sulfur and chlorinated aromatic compounds. Two sets of compounds, containing mainly halogen and sulfur inorganic compounds in the first set and chlorinated aromatic compounds in the second, are investigated for their toxicity level with the aid of the conceptual Density Functional Theory (DFT) method. Both sets are tested with the conventional density functional descriptors and with a newly proposed net electrophilicity descriptor. Associated R2, R2CV and R2adj values reveal that in the first set, the proposed net electrophilicity descriptor (??±) provides the best result, whereas in the second set, electrophilicity index (?) and a newly proposed descriptor, net electrophilicity index (??±) provide a comparable performance. The potential of net electrophilicity index to act as descriptor in development of QSAR model is also discussed.\",\"PeriodicalId\":132974,\"journal\":{\"name\":\"Int. J. Chemoinformatics Chem. Eng.\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Chemoinformatics Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcce.2011010105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Chemoinformatics Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcce.2011010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toxicity of Halogen, Sulfur and Chlorinated Aromatic Compounds: A Quantitative-Structure-Toxicity-Relationship (QSTR)
In this paper, quantitative–structure–toxicity–relationship (QSTR) models are developed for predicting the toxicity of halogen, sulfur and chlorinated aromatic compounds. Two sets of compounds, containing mainly halogen and sulfur inorganic compounds in the first set and chlorinated aromatic compounds in the second, are investigated for their toxicity level with the aid of the conceptual Density Functional Theory (DFT) method. Both sets are tested with the conventional density functional descriptors and with a newly proposed net electrophilicity descriptor. Associated R2, R2CV and R2adj values reveal that in the first set, the proposed net electrophilicity descriptor (??±) provides the best result, whereas in the second set, electrophilicity index (?) and a newly proposed descriptor, net electrophilicity index (??±) provide a comparable performance. The potential of net electrophilicity index to act as descriptor in development of QSAR model is also discussed.