一种快速简便的网络(Un)可靠性无偏估计方法

David R Karger
{"title":"一种快速简便的网络(Un)可靠性无偏估计方法","authors":"David R Karger","doi":"10.1109/FOCS.2016.96","DOIUrl":null,"url":null,"abstract":"The following procedure yields an unbiased estimator for the disconnection probability of an n-vertex graph with minimum cut c if every edge fails independently with probability p: (i) contract every edge independently with probability 1- n-2/c, then (ii) recursively compute the disconnection probability of the resulting tiny graph if each edge fails with probability n2/cp. We give a short, simple, self-contained proof that this estimator can be computed in linear time and has relative variance O(n2). Combining these two facts with a standard sparsification argument yields an O(n3 log n)-time algorithm for estimating the (un)reliability of a network. We also show how the technique can be used to create unbiased samples of disconnected networks.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Fast and Simple Unbiased Estimator for Network (Un)reliability\",\"authors\":\"David R Karger\",\"doi\":\"10.1109/FOCS.2016.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following procedure yields an unbiased estimator for the disconnection probability of an n-vertex graph with minimum cut c if every edge fails independently with probability p: (i) contract every edge independently with probability 1- n-2/c, then (ii) recursively compute the disconnection probability of the resulting tiny graph if each edge fails with probability n2/cp. We give a short, simple, self-contained proof that this estimator can be computed in linear time and has relative variance O(n2). Combining these two facts with a standard sparsification argument yields an O(n3 log n)-time algorithm for estimating the (un)reliability of a network. We also show how the technique can be used to create unbiased samples of disconnected networks.\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

如果每条边都以概率p独立失败,下面的过程给出了具有最小切割量c的n顶点图的断开概率的无偏估计:(i)以概率1- n-2/c独立收缩每条边,然后(ii)递归地计算如果每条边都以概率n2/cp失败,得到的小图的断开概率。我们给出了一个简短的、简单的、自包含的证明,证明了该估计量可以在线性时间内计算,并且相对方差为O(n2)。将这两个事实与标准的稀疏化论证结合起来,可以得到一个O(n3 log n)时间的算法,用于估计网络的(非)可靠性。我们还展示了如何使用该技术来创建断开网络的无偏样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast and Simple Unbiased Estimator for Network (Un)reliability
The following procedure yields an unbiased estimator for the disconnection probability of an n-vertex graph with minimum cut c if every edge fails independently with probability p: (i) contract every edge independently with probability 1- n-2/c, then (ii) recursively compute the disconnection probability of the resulting tiny graph if each edge fails with probability n2/cp. We give a short, simple, self-contained proof that this estimator can be computed in linear time and has relative variance O(n2). Combining these two facts with a standard sparsification argument yields an O(n3 log n)-time algorithm for estimating the (un)reliability of a network. We also show how the technique can be used to create unbiased samples of disconnected networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential Lower Bounds for Monotone Span Programs Truly Sub-cubic Algorithms for Language Edit Distance and RNA-Folding via Fast Bounded-Difference Min-Plus Product Polynomial-Time Tensor Decompositions with Sum-of-Squares Decremental Single-Source Reachability and Strongly Connected Components in Õ(m√n) Total Update Time NP-Hardness of Reed-Solomon Decoding and the Prouhet-Tarry-Escott Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1