{"title":"基于时间预估的低成本车道跟踪系统设计","authors":"A. Brown, S. Brennan","doi":"10.1109/IVS.2014.6856606","DOIUrl":null,"url":null,"abstract":"Computer-based guidance of passenger vehicles is a common reality today, but cost, computation, and robustness challenges remain to obtain accurate vehicle state estimates. This study builds on previous work by the authors towards the development of a vehicle state estimation framework that uses optimal preview control theory to fuse map, GPS, inertial, and forward-looking camera information in a linear filter that offers a-priori predictions of state estimate accuracy. By designing an optimal preview controller around a preview filter designed to make full use of a test vehicle's low-cost sensors, on-board map, and available visibility, a matched perception and control system is obtained. The resulting preview-based guidance system has a structure similar to LQG algorithms, and is tested both in simulation and on a real vehicle. The closed loop system provides lane-level tracking performance with low cost sensors.","PeriodicalId":254500,"journal":{"name":"2014 IEEE Intelligent Vehicles Symposium Proceedings","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal preview estimation for design of a low cost lane-following system using a forward-facing monocular camera\",\"authors\":\"A. Brown, S. Brennan\",\"doi\":\"10.1109/IVS.2014.6856606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer-based guidance of passenger vehicles is a common reality today, but cost, computation, and robustness challenges remain to obtain accurate vehicle state estimates. This study builds on previous work by the authors towards the development of a vehicle state estimation framework that uses optimal preview control theory to fuse map, GPS, inertial, and forward-looking camera information in a linear filter that offers a-priori predictions of state estimate accuracy. By designing an optimal preview controller around a preview filter designed to make full use of a test vehicle's low-cost sensors, on-board map, and available visibility, a matched perception and control system is obtained. The resulting preview-based guidance system has a structure similar to LQG algorithms, and is tested both in simulation and on a real vehicle. The closed loop system provides lane-level tracking performance with low cost sensors.\",\"PeriodicalId\":254500,\"journal\":{\"name\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Intelligent Vehicles Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2014.6856606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Intelligent Vehicles Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2014.6856606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal preview estimation for design of a low cost lane-following system using a forward-facing monocular camera
Computer-based guidance of passenger vehicles is a common reality today, but cost, computation, and robustness challenges remain to obtain accurate vehicle state estimates. This study builds on previous work by the authors towards the development of a vehicle state estimation framework that uses optimal preview control theory to fuse map, GPS, inertial, and forward-looking camera information in a linear filter that offers a-priori predictions of state estimate accuracy. By designing an optimal preview controller around a preview filter designed to make full use of a test vehicle's low-cost sensors, on-board map, and available visibility, a matched perception and control system is obtained. The resulting preview-based guidance system has a structure similar to LQG algorithms, and is tested both in simulation and on a real vehicle. The closed loop system provides lane-level tracking performance with low cost sensors.