{"title":"修正共轭梯度法的收敛性","authors":"Bo Zhang","doi":"10.1109/CINC.2010.5643723","DOIUrl":null,"url":null,"abstract":"In this paper, a class of modified conjugate gradient methods are proposed, which have the following attractive properties: (1) the step length is determined by a formula; (2) the iterative direction is always a sufficient descent direction without utilizing the line search. Under the boundedness of the level set and the Lipschitz continuity of the underlying function, the proposed methods are global convergent. Some numerical results are given to illustrate the effectiveness of the proposed methods.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convergence of modified conjugate gradient methods without line search\",\"authors\":\"Bo Zhang\",\"doi\":\"10.1109/CINC.2010.5643723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a class of modified conjugate gradient methods are proposed, which have the following attractive properties: (1) the step length is determined by a formula; (2) the iterative direction is always a sufficient descent direction without utilizing the line search. Under the boundedness of the level set and the Lipschitz continuity of the underlying function, the proposed methods are global convergent. Some numerical results are given to illustrate the effectiveness of the proposed methods.\",\"PeriodicalId\":227004,\"journal\":{\"name\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2010.5643723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一类改进的共轭梯度法,它具有以下吸引人的性质:(1)步长由公式确定;(2)不使用直线搜索,迭代方向始终是一个充分的下降方向。在水平集的有界性和底层函数的Lipschitz连续性下,所提方法是全局收敛的。数值结果表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convergence of modified conjugate gradient methods without line search
In this paper, a class of modified conjugate gradient methods are proposed, which have the following attractive properties: (1) the step length is determined by a formula; (2) the iterative direction is always a sufficient descent direction without utilizing the line search. Under the boundedness of the level set and the Lipschitz continuity of the underlying function, the proposed methods are global convergent. Some numerical results are given to illustrate the effectiveness of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary design of ANN structure using genetic algorithm Performance analysis of spread spectrum communication system in fading enviornment and Interference Comprehensive evaluation of forest industries based on rough sets and artificial neural network A new descent algorithm with curve search rule for unconstrained minimization A multi-agent simulation for intelligence economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1