基于高阶统计量和逆滤波准则的齿轮故障线性模型辨识

Wenyi Wang
{"title":"基于高阶统计量和逆滤波准则的齿轮故障线性模型辨识","authors":"Wenyi Wang","doi":"10.1109/ISSPA.2001.949855","DOIUrl":null,"url":null,"abstract":"Our study in the past showed that the autoregressive (AR) modelling method could be effectively used in the detection of gear tooth cracking. In the search for further improvement, a technique of identifying linear parametric models for gear signals using higher order statistics and inverse filter criteria has been evaluated and was applied to some seeded fault gear test data. The results indicate that this approach is more effective than the AR modelling method and the conventional residual signal technique.","PeriodicalId":236050,"journal":{"name":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linear model identification for gear fault detection using higher order statistics and inverse filter criteria\",\"authors\":\"Wenyi Wang\",\"doi\":\"10.1109/ISSPA.2001.949855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our study in the past showed that the autoregressive (AR) modelling method could be effectively used in the detection of gear tooth cracking. In the search for further improvement, a technique of identifying linear parametric models for gear signals using higher order statistics and inverse filter criteria has been evaluated and was applied to some seeded fault gear test data. The results indicate that this approach is more effective than the AR modelling method and the conventional residual signal technique.\",\"PeriodicalId\":236050,\"journal\":{\"name\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2001.949855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Symposium on Signal Processing and its Applications (Cat.No.01EX467)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2001.949855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

以往的研究表明,自回归(AR)建模方法可以有效地用于齿轮齿裂检测。为了寻求进一步的改进,研究了一种利用高阶统计量和逆滤波准则识别齿轮信号线性参数模型的技术,并将其应用于一些种子故障齿轮试验数据。结果表明,该方法比AR建模方法和传统的残余信号技术更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear model identification for gear fault detection using higher order statistics and inverse filter criteria
Our study in the past showed that the autoregressive (AR) modelling method could be effectively used in the detection of gear tooth cracking. In the search for further improvement, a technique of identifying linear parametric models for gear signals using higher order statistics and inverse filter criteria has been evaluated and was applied to some seeded fault gear test data. The results indicate that this approach is more effective than the AR modelling method and the conventional residual signal technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large dynamic range time-frequency signal analysis with application to helicopter Doppler radar data Statistical analysis of neural network modeling and identification of nonlinear systems with memory Design of oversampled uniform DFT filter banks with reduced inband aliasing and delay constraints Identification of DCT signs for sub-block coding Skin color detection for face localization in human-machine communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1