基于Gazebo和SUMO的队列仿真框架

Kenan Ahmic, Anel Tahirbegović, A. Tahirovic, D. Watzenig, G. Stettinger
{"title":"基于Gazebo和SUMO的队列仿真框架","authors":"Kenan Ahmic, Anel Tahirbegović, A. Tahirovic, D. Watzenig, G. Stettinger","doi":"10.1109/CAVS51000.2020.9334630","DOIUrl":null,"url":null,"abstract":"The role of autonomous cooperative vehicles will undoubtedly be important in Intelligent Transportation Systems (ITS) to increase both the safety and the overall efficiency of a high traffic network system. An autonomous platooning provides one promising strategy for decreasing total fuel consumption of a fleet of vehicles and potential risk of accidents, especially during long-distance transportation. In this work, we provide a proof-of-concept for a simulation framework in which it is possible to simulate platoon and other multi-vehicle systems using realistic vehicle models within different traffic scenarios, which is based on ROS, Gazebo and SUMO. The framework enables an easy-to-use perception and control modules of the autonomous driving stack for a realistic vehicle models, while preserving a convenient setup of different high traffic platooning scenarios. Consequently, it provides a platooning design step for conducting reliable development analyses and a platform for comparisons of different platooning strategies. We illustrate the effectiveness of the proposed platooning framework through three typical scenarios using a distributed model predictive control scheme with a platoon consisted of Toyota Prius car models.","PeriodicalId":409507,"journal":{"name":"2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Framework for Platooning based on Gazebo and SUMO\",\"authors\":\"Kenan Ahmic, Anel Tahirbegović, A. Tahirovic, D. Watzenig, G. Stettinger\",\"doi\":\"10.1109/CAVS51000.2020.9334630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of autonomous cooperative vehicles will undoubtedly be important in Intelligent Transportation Systems (ITS) to increase both the safety and the overall efficiency of a high traffic network system. An autonomous platooning provides one promising strategy for decreasing total fuel consumption of a fleet of vehicles and potential risk of accidents, especially during long-distance transportation. In this work, we provide a proof-of-concept for a simulation framework in which it is possible to simulate platoon and other multi-vehicle systems using realistic vehicle models within different traffic scenarios, which is based on ROS, Gazebo and SUMO. The framework enables an easy-to-use perception and control modules of the autonomous driving stack for a realistic vehicle models, while preserving a convenient setup of different high traffic platooning scenarios. Consequently, it provides a platooning design step for conducting reliable development analyses and a platform for comparisons of different platooning strategies. We illustrate the effectiveness of the proposed platooning framework through three typical scenarios using a distributed model predictive control scheme with a platoon consisted of Toyota Prius car models.\",\"PeriodicalId\":409507,\"journal\":{\"name\":\"2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAVS51000.2020.9334630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAVS51000.2020.9334630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在智能交通系统(ITS)中,自动协作车辆的作用无疑是重要的,它可以提高高速交通网络系统的安全性和整体效率。自动队列为降低车队的总油耗和潜在事故风险提供了一种很有前景的策略,尤其是在长途运输中。在这项工作中,我们提供了一个模拟框架的概念验证,在这个框架中,可以在不同的交通场景中使用真实的车辆模型来模拟排和其他多车辆系统,这是基于ROS, Gazebo和SUMO的。该框架为真实的车辆模型提供了易于使用的自动驾驶堆栈感知和控制模块,同时保留了不同高流量队列场景的方便设置。因此,它为进行可靠的开发分析提供了一个队列设计步骤,并为不同队列策略的比较提供了一个平台。我们通过三个典型的场景,使用一个由丰田普锐斯车型组成的队列组成的分布式模型预测控制方案来说明所提出的队列框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation Framework for Platooning based on Gazebo and SUMO
The role of autonomous cooperative vehicles will undoubtedly be important in Intelligent Transportation Systems (ITS) to increase both the safety and the overall efficiency of a high traffic network system. An autonomous platooning provides one promising strategy for decreasing total fuel consumption of a fleet of vehicles and potential risk of accidents, especially during long-distance transportation. In this work, we provide a proof-of-concept for a simulation framework in which it is possible to simulate platoon and other multi-vehicle systems using realistic vehicle models within different traffic scenarios, which is based on ROS, Gazebo and SUMO. The framework enables an easy-to-use perception and control modules of the autonomous driving stack for a realistic vehicle models, while preserving a convenient setup of different high traffic platooning scenarios. Consequently, it provides a platooning design step for conducting reliable development analyses and a platform for comparisons of different platooning strategies. We illustrate the effectiveness of the proposed platooning framework through three typical scenarios using a distributed model predictive control scheme with a platoon consisted of Toyota Prius car models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prototyping EcoCAR Connected Vehicle Testing System Using DigiCAV Development Platform Title Page Extended H∞ Filter Adaptation Based on Innovation Sequence for Advanced Ego-Vehicle Motion Estimation Hybrid Model Based Pre-Crash Severity Estimation for Automated Driving A Methodology to Determine Test Scenarios for Sensor Constellation Evaluations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1