HASHTAG:用于深度神经网络故障注入攻击在线检测的哈希签名

Mojan Javaheripi, F. Koushanfar
{"title":"HASHTAG:用于深度神经网络故障注入攻击在线检测的哈希签名","authors":"Mojan Javaheripi, F. Koushanfar","doi":"10.1109/ICCAD51958.2021.9643556","DOIUrl":null,"url":null,"abstract":"We propose Hashtag, the first framework that enables high-accuracy detection of fault-injection attacks on Deep Neural Networks (DNNs) with provable bounds on detection performance. Recent literature in fault-injection attacks shows the severe DNN accuracy degradation caused by bit flips. In this scenario, the attacker changes a few weight bits during DNN execution by tampering with the program's DRAM memory. To detect runtime bit flips, Hashtag extracts a unique signature from the benign DNN prior to deployment. The signature is later used to validate the integrity of the DNN and verify the inference output on the fly. We propose a novel sensitivity analysis scheme that accurately identifies the most vulnerable DNN layers to the fault-injection attack. The DNN signature is then constructed by encoding the underlying weights in the vulnerable layers using a low-collision hash function. When the DNN is deployed, new hashes are extracted from the target layers during inference and compared against the ground-truth signatures. Hashtag incorporates a lightweight methodology that ensures a low-overhead and real-time fault detection on embedded platforms. Extensive evaluations with the state-of-the-art bit-flip attack on various DNNs demonstrate the competitive advantage of Hashtag in terms of both attack detection and execution overhead.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"HASHTAG: Hash Signatures for Online Detection of Fault-Injection Attacks on Deep Neural Networks\",\"authors\":\"Mojan Javaheripi, F. Koushanfar\",\"doi\":\"10.1109/ICCAD51958.2021.9643556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Hashtag, the first framework that enables high-accuracy detection of fault-injection attacks on Deep Neural Networks (DNNs) with provable bounds on detection performance. Recent literature in fault-injection attacks shows the severe DNN accuracy degradation caused by bit flips. In this scenario, the attacker changes a few weight bits during DNN execution by tampering with the program's DRAM memory. To detect runtime bit flips, Hashtag extracts a unique signature from the benign DNN prior to deployment. The signature is later used to validate the integrity of the DNN and verify the inference output on the fly. We propose a novel sensitivity analysis scheme that accurately identifies the most vulnerable DNN layers to the fault-injection attack. The DNN signature is then constructed by encoding the underlying weights in the vulnerable layers using a low-collision hash function. When the DNN is deployed, new hashes are extracted from the target layers during inference and compared against the ground-truth signatures. Hashtag incorporates a lightweight methodology that ensures a low-overhead and real-time fault detection on embedded platforms. Extensive evaluations with the state-of-the-art bit-flip attack on various DNNs demonstrate the competitive advantage of Hashtag in terms of both attack detection and execution overhead.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了Hashtag,这是第一个能够高精度检测深度神经网络(dnn)上的故障注入攻击的框架,具有可证明的检测性能界限。最近关于故障注入攻击的文献表明,比特翻转导致深度神经网络精度严重下降。在这种情况下,攻击者在DNN执行期间通过篡改程序的DRAM内存来改变几个权重位。为了检测运行时位翻转,Hashtag在部署之前从良性DNN中提取唯一签名。该签名随后用于验证DNN的完整性,并动态验证推理输出。我们提出了一种新的灵敏度分析方案,可以准确地识别出最容易受到故障注入攻击的深层神经网络层。然后通过使用低碰撞哈希函数对脆弱层中的底层权重进行编码来构建DNN签名。当部署DNN时,在推理过程中从目标层提取新的哈希值,并与基真签名进行比较。Hashtag集成了一种轻量级方法,可确保在嵌入式平台上进行低开销和实时故障检测。对各种dnn的最先进的位翻转攻击进行了广泛的评估,证明了Hashtag在攻击检测和执行开销方面的竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HASHTAG: Hash Signatures for Online Detection of Fault-Injection Attacks on Deep Neural Networks
We propose Hashtag, the first framework that enables high-accuracy detection of fault-injection attacks on Deep Neural Networks (DNNs) with provable bounds on detection performance. Recent literature in fault-injection attacks shows the severe DNN accuracy degradation caused by bit flips. In this scenario, the attacker changes a few weight bits during DNN execution by tampering with the program's DRAM memory. To detect runtime bit flips, Hashtag extracts a unique signature from the benign DNN prior to deployment. The signature is later used to validate the integrity of the DNN and verify the inference output on the fly. We propose a novel sensitivity analysis scheme that accurately identifies the most vulnerable DNN layers to the fault-injection attack. The DNN signature is then constructed by encoding the underlying weights in the vulnerable layers using a low-collision hash function. When the DNN is deployed, new hashes are extracted from the target layers during inference and compared against the ground-truth signatures. Hashtag incorporates a lightweight methodology that ensures a low-overhead and real-time fault detection on embedded platforms. Extensive evaluations with the state-of-the-art bit-flip attack on various DNNs demonstrate the competitive advantage of Hashtag in terms of both attack detection and execution overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate PPA Modeling with Transfer Learning Mobileware: A High-Performance MobileNet Accelerator with Channel Stationary Dataflow A General Hardware and Software Co-Design Framework for Energy-Efficient Edge AI ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip Early Validation of SoCs Security Architecture Against Timing Flows Using SystemC-based VPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1