一种自动无监督离散化方法:一种新方法

H. Drias, Hadjer Moulai, Y. Drias
{"title":"一种自动无监督离散化方法:一种新方法","authors":"H. Drias, Hadjer Moulai, Y. Drias","doi":"10.1142/s2196888820500177","DOIUrl":null,"url":null,"abstract":"In this paper, for the first time, a novel discretization scheme is proposed aiming at enabling scalability but also at least three other strong challenges. It is based on a Left-to-Right (LR) scanning process, which partitions the input stream into intervals. This task can be implemented by an algorithm or by using a generator that builds automatically the discretization program. We focus especially on unsupervised discretization and design a method called Usupervised Left to Right Discretization (ULR-Discr). Extensive experiments were conducted using various cut-point functions on small, large and medical public datasets. First, ULR-Discr variants under different statistics are compared between themselves with the aim at observing the impact of the cut-point functions on accuracy and runtime. Then the proposed method is compared to traditional and recent techniques for classification. The result is that the classification accuracy is highly improved when using our method for discretization.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Automated Unsupervised Discretization Method: A Novel Approach\",\"authors\":\"H. Drias, Hadjer Moulai, Y. Drias\",\"doi\":\"10.1142/s2196888820500177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for the first time, a novel discretization scheme is proposed aiming at enabling scalability but also at least three other strong challenges. It is based on a Left-to-Right (LR) scanning process, which partitions the input stream into intervals. This task can be implemented by an algorithm or by using a generator that builds automatically the discretization program. We focus especially on unsupervised discretization and design a method called Usupervised Left to Right Discretization (ULR-Discr). Extensive experiments were conducted using various cut-point functions on small, large and medical public datasets. First, ULR-Discr variants under different statistics are compared between themselves with the aim at observing the impact of the cut-point functions on accuracy and runtime. Then the proposed method is compared to traditional and recent techniques for classification. The result is that the classification accuracy is highly improved when using our method for discretization.\",\"PeriodicalId\":256649,\"journal\":{\"name\":\"Vietnam. J. Comput. Sci.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam. J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2196888820500177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888820500177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,首次提出了一种新的离散化方案,旨在实现可扩展性,但也至少有三个其他强大的挑战。它基于从左到右(LR)扫描过程,该过程将输入流划分为间隔。这项任务可以通过算法或使用自动构建离散化程序的生成器来实现。我们特别关注无监督离散化,并设计了一种称为ussupervised Left to Right discreization (ULR-Discr)的方法。在小型、大型和医疗公共数据集上使用各种切点函数进行了广泛的实验。首先,对不同统计量下的ULR-Discr变量进行比较,观察截点函数对准确率和运行时间的影响。然后将该方法与传统和最新的分类技术进行了比较。结果表明,采用该方法进行离散化处理后,分类精度得到了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Automated Unsupervised Discretization Method: A Novel Approach
In this paper, for the first time, a novel discretization scheme is proposed aiming at enabling scalability but also at least three other strong challenges. It is based on a Left-to-Right (LR) scanning process, which partitions the input stream into intervals. This task can be implemented by an algorithm or by using a generator that builds automatically the discretization program. We focus especially on unsupervised discretization and design a method called Usupervised Left to Right Discretization (ULR-Discr). Extensive experiments were conducted using various cut-point functions on small, large and medical public datasets. First, ULR-Discr variants under different statistics are compared between themselves with the aim at observing the impact of the cut-point functions on accuracy and runtime. Then the proposed method is compared to traditional and recent techniques for classification. The result is that the classification accuracy is highly improved when using our method for discretization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1