ILMDA:智能学习材料交付代理和模拟

Leen-Kiat Soh, T. Blank, L. D. Miller, S. Person
{"title":"ILMDA:智能学习材料交付代理和模拟","authors":"Leen-Kiat Soh, T. Blank, L. D. Miller, S. Person","doi":"10.1109/EIT.2005.1627023","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an intelligent agent that delivers learning materials adaptively to different students, factoring in the usage history of the learning materials, the student static background profile, and the student dynamic activity profile. Our assumption is that through the interaction of a student going through a learning material (i.e., a topical tutorial, a set of examples, and a set of problems), an agent will be able to capture and utilize the student's activity as the primer to select the appropriate example or problem to administer to the student. In addition, our agent monitors the usage history of the learning materials and derives empirical observations that improve its performance. We have built an end-to-end infrastructure, with a GUI front-end, an agent powered by case-based reasoning, and a multi-database backend. Preliminary experiments based on a comprehensive simulator show the feasibility, correctness, and learning capability of our methodology and system","PeriodicalId":358002,"journal":{"name":"2005 IEEE International Conference on Electro Information Technology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"ILMDA: an intelligent learning materials delivery agent and simulation\",\"authors\":\"Leen-Kiat Soh, T. Blank, L. D. Miller, S. Person\",\"doi\":\"10.1109/EIT.2005.1627023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe an intelligent agent that delivers learning materials adaptively to different students, factoring in the usage history of the learning materials, the student static background profile, and the student dynamic activity profile. Our assumption is that through the interaction of a student going through a learning material (i.e., a topical tutorial, a set of examples, and a set of problems), an agent will be able to capture and utilize the student's activity as the primer to select the appropriate example or problem to administer to the student. In addition, our agent monitors the usage history of the learning materials and derives empirical observations that improve its performance. We have built an end-to-end infrastructure, with a GUI front-end, an agent powered by case-based reasoning, and a multi-database backend. Preliminary experiments based on a comprehensive simulator show the feasibility, correctness, and learning capability of our methodology and system\",\"PeriodicalId\":358002,\"journal\":{\"name\":\"2005 IEEE International Conference on Electro Information Technology\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Conference on Electro Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2005.1627023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Electro Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2005.1627023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们描述了一个智能代理,它可以根据学习材料的使用历史、学生的静态背景资料和学生的动态活动资料,自适应地为不同的学生提供学习材料。我们的假设是,通过学生对学习材料(即,专题教程,一组示例和一组问题)的交互,代理将能够捕获并利用学生的活动作为引子,以选择适当的示例或问题来管理学生。此外,我们的智能体监控学习材料的使用历史,并得出经验观察结果,以提高其性能。我们已经构建了一个端到端的基础设施,包括GUI前端、基于案例推理的代理和多数据库后端。基于综合模拟器的初步实验证明了该方法和系统的可行性、正确性和学习能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ILMDA: an intelligent learning materials delivery agent and simulation
In this paper, we describe an intelligent agent that delivers learning materials adaptively to different students, factoring in the usage history of the learning materials, the student static background profile, and the student dynamic activity profile. Our assumption is that through the interaction of a student going through a learning material (i.e., a topical tutorial, a set of examples, and a set of problems), an agent will be able to capture and utilize the student's activity as the primer to select the appropriate example or problem to administer to the student. In addition, our agent monitors the usage history of the learning materials and derives empirical observations that improve its performance. We have built an end-to-end infrastructure, with a GUI front-end, an agent powered by case-based reasoning, and a multi-database backend. Preliminary experiments based on a comprehensive simulator show the feasibility, correctness, and learning capability of our methodology and system
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carry-save and binary sign-digit representations conversion Energy macro-modeling of embedded microprocessor using SystemC A proportional rate-based control scheme for active queue management Hierarchical clustering for image databases Theft-induced checkpointing for reconfigurable dataflow applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1