利用改进的遗传算法从频繁和不频繁模式中挖掘正关联规则和负关联规则

Jeetesh Kumar Jain, N. Tiwari, M. Ramaiya
{"title":"利用改进的遗传算法从频繁和不频繁模式中挖掘正关联规则和负关联规则","authors":"Jeetesh Kumar Jain, N. Tiwari, M. Ramaiya","doi":"10.1109/CICN.2013.146","DOIUrl":null,"url":null,"abstract":"Association Rule Mining becomes a vast area of research in last few decades. The basic idea behind ARM is to mine positive (interesting) and negative (uninteresting) rules from a transaction database. In this paper we have proposed a new model for mining positive and negative association rules. Our proposed model is an integration between two algorithms, the interesting multiple level minimum support (IMLMS) algorithm and genetic algorithm (GA), which propose a new approach for mining positive and negative rules from frequent and infrequent itemset mined in IMLMS model. Our model gives much better results than previous model.","PeriodicalId":415274,"journal":{"name":"2013 5th International Conference on Computational Intelligence and Communication Networks","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mining Positive and Negative Association Rules from Frequent and Infrequent Pattern Using Improved Genetic Algorithm\",\"authors\":\"Jeetesh Kumar Jain, N. Tiwari, M. Ramaiya\",\"doi\":\"10.1109/CICN.2013.146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association Rule Mining becomes a vast area of research in last few decades. The basic idea behind ARM is to mine positive (interesting) and negative (uninteresting) rules from a transaction database. In this paper we have proposed a new model for mining positive and negative association rules. Our proposed model is an integration between two algorithms, the interesting multiple level minimum support (IMLMS) algorithm and genetic algorithm (GA), which propose a new approach for mining positive and negative rules from frequent and infrequent itemset mined in IMLMS model. Our model gives much better results than previous model.\",\"PeriodicalId\":415274,\"journal\":{\"name\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Computational Intelligence and Communication Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN.2013.146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2013.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近几十年来,关联规则挖掘成为一个广泛的研究领域。ARM背后的基本思想是从事务数据库中挖掘积极(有趣的)和消极(无趣的)规则。本文提出了一种新的正关联规则和负关联规则挖掘模型。我们提出的模型是有趣的多层最小支持度(IMLMS)算法和遗传算法(GA)两种算法的集成,提出了一种从IMLMS模型中挖掘的频繁和不频繁项目集中挖掘正规则和负规则的新方法。我们的模型比以前的模型给出了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining Positive and Negative Association Rules from Frequent and Infrequent Pattern Using Improved Genetic Algorithm
Association Rule Mining becomes a vast area of research in last few decades. The basic idea behind ARM is to mine positive (interesting) and negative (uninteresting) rules from a transaction database. In this paper we have proposed a new model for mining positive and negative association rules. Our proposed model is an integration between two algorithms, the interesting multiple level minimum support (IMLMS) algorithm and genetic algorithm (GA), which propose a new approach for mining positive and negative rules from frequent and infrequent itemset mined in IMLMS model. Our model gives much better results than previous model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Model of Legacy Software Reuse Based on Code Clone Detection QoS in Interconnection of Next Generation Networks Post Silicon Debugging Approach for USB2.0: Case Study of Enumeration Based on Fiber-Optic Sensor and the Light Intensity Changes Vehicle Dynamic Weighing System Comparison of AOMDV Routing Protocol under IEEE802.11 and TDMA Mac Layer Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1