第八章。设计和表征基于肽的纳米结构的硅方法

C. Globisch, Marc Isele, C. Peter, Alok Jain
{"title":"第八章。设计和表征基于肽的纳米结构的硅方法","authors":"C. Globisch, Marc Isele, C. Peter, Alok Jain","doi":"10.1039/9781788016308-00204","DOIUrl":null,"url":null,"abstract":"Molecular dynamics (MD) simulations can show structural and dynamic details on an atomistic level in a native-like environment. Conventional atomistic MD simulations have been successfully applied to many problems, however, they often do not cover the necessary timescales to sufficiently explore conformational phase and reach convergence. In this study, we discuss two examples where we have employed atomistic simulations followed by either Hamiltonian replica exchange molecular dynamics (H-REMD) or coarse-grained (CG) simulations to identify the intrinsic details of nanostructure formation processes and the influence of various factors on them. We demonstrate that combining computational approaches or resolution levels is very useful to overcome the limitations of a single method, like pure atomistic simulations, while still keeping its advantages. However, it is very important to carefully select suitable methods, parameters and approaches to get meaningful results with sufficient accuracy.","PeriodicalId":263032,"journal":{"name":"Nanoparticle–Protein Corona","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHAPTER 8. In Silico Approaches to Design and Characterize Peptide-based Nanostructures\",\"authors\":\"C. Globisch, Marc Isele, C. Peter, Alok Jain\",\"doi\":\"10.1039/9781788016308-00204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular dynamics (MD) simulations can show structural and dynamic details on an atomistic level in a native-like environment. Conventional atomistic MD simulations have been successfully applied to many problems, however, they often do not cover the necessary timescales to sufficiently explore conformational phase and reach convergence. In this study, we discuss two examples where we have employed atomistic simulations followed by either Hamiltonian replica exchange molecular dynamics (H-REMD) or coarse-grained (CG) simulations to identify the intrinsic details of nanostructure formation processes and the influence of various factors on them. We demonstrate that combining computational approaches or resolution levels is very useful to overcome the limitations of a single method, like pure atomistic simulations, while still keeping its advantages. However, it is very important to carefully select suitable methods, parameters and approaches to get meaningful results with sufficient accuracy.\",\"PeriodicalId\":263032,\"journal\":{\"name\":\"Nanoparticle–Protein Corona\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoparticle–Protein Corona\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016308-00204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoparticle–Protein Corona","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016308-00204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子动力学(MD)模拟可以在类似原生环境的原子水平上显示结构和动态细节。传统的原子动力学模拟已经成功地应用于许多问题,然而,它们往往没有涵盖必要的时间尺度,以充分探索构象相并达到收敛。在本研究中,我们讨论了两个例子,其中我们采用原子模拟,然后是哈密顿复制交换分子动力学(H-REMD)或粗粒度(CG)模拟,以确定纳米结构形成过程的内在细节以及各种因素对它们的影响。我们证明,结合计算方法或分辨率水平对于克服单一方法(如纯原子模拟)的局限性非常有用,同时仍然保持其优势。然而,仔细选择合适的方法、参数和途径,以获得有意义和足够精度的结果是非常重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CHAPTER 8. In Silico Approaches to Design and Characterize Peptide-based Nanostructures
Molecular dynamics (MD) simulations can show structural and dynamic details on an atomistic level in a native-like environment. Conventional atomistic MD simulations have been successfully applied to many problems, however, they often do not cover the necessary timescales to sufficiently explore conformational phase and reach convergence. In this study, we discuss two examples where we have employed atomistic simulations followed by either Hamiltonian replica exchange molecular dynamics (H-REMD) or coarse-grained (CG) simulations to identify the intrinsic details of nanostructure formation processes and the influence of various factors on them. We demonstrate that combining computational approaches or resolution levels is very useful to overcome the limitations of a single method, like pure atomistic simulations, while still keeping its advantages. However, it is very important to carefully select suitable methods, parameters and approaches to get meaningful results with sufficient accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CHAPTER 2. Biological Significance of the Nanoparticles Protein Corona CHAPTER 10. The Protein Corona: Applications and Challenges CHAPTER 9. Nanomaterial–Blood Interactions: A Biomedical Perspective CHAPTER 4. NP–Protein Corona Interaction: Characterization Methods and Analysis CHAPTER 3. Factors Affecting a Nanoparticle's Protein Corona Formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1