通过软余弦测量的移动对象的视觉跟踪

Driss Moujahid, O. Elharrouss, H. Tairi
{"title":"通过软余弦测量的移动对象的视觉跟踪","authors":"Driss Moujahid, O. Elharrouss, H. Tairi","doi":"10.1109/ATSIP.2017.8075521","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Local Soft Similarity based on Soft Cosine Measure (L3SCM) and then we incorporate it into visual tracking framework. Firstly, we present the soft cosine measure that measures the soft similarity between two vectors of features by taking into consideration similarities of pairs of features. Secondly, we apply this soft similarity in the observation model component of the proposed tracker to measure the local similarities between the template of the tracked target and the sampled candidates. Finally, in order to improve the robustness of the proposed tracker, we integrate a simple scheme to update the target template throughout the tracking process. Experimental results on several challenging image sequences illustrate that the proposed method performs better against several state-of-the-art trackers.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual tracking of a moving object via the soft cosine measure\",\"authors\":\"Driss Moujahid, O. Elharrouss, H. Tairi\",\"doi\":\"10.1109/ATSIP.2017.8075521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a Local Soft Similarity based on Soft Cosine Measure (L3SCM) and then we incorporate it into visual tracking framework. Firstly, we present the soft cosine measure that measures the soft similarity between two vectors of features by taking into consideration similarities of pairs of features. Secondly, we apply this soft similarity in the observation model component of the proposed tracker to measure the local similarities between the template of the tracked target and the sampled candidates. Finally, in order to improve the robustness of the proposed tracker, we integrate a simple scheme to update the target template throughout the tracking process. Experimental results on several challenging image sequences illustrate that the proposed method performs better against several state-of-the-art trackers.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于软余弦测度的局部软相似度(L3SCM)算法,并将其纳入视觉跟踪框架。首先,我们提出了软余弦度量,通过考虑特征对的相似度来度量两个特征向量之间的软相似度。其次,我们将这种软相似度应用于跟踪器的观测模型组件中,测量被跟踪目标模板与被采样候选模板之间的局部相似度。最后,为了提高所提跟踪器的鲁棒性,我们集成了一个简单的方案,在整个跟踪过程中更新目标模板。在几个具有挑战性的图像序列上的实验结果表明,该方法对几种最先进的跟踪器具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual tracking of a moving object via the soft cosine measure
In this paper, we propose a Local Soft Similarity based on Soft Cosine Measure (L3SCM) and then we incorporate it into visual tracking framework. Firstly, we present the soft cosine measure that measures the soft similarity between two vectors of features by taking into consideration similarities of pairs of features. Secondly, we apply this soft similarity in the observation model component of the proposed tracker to measure the local similarities between the template of the tracked target and the sampled candidates. Finally, in order to improve the robustness of the proposed tracker, we integrate a simple scheme to update the target template throughout the tracking process. Experimental results on several challenging image sequences illustrate that the proposed method performs better against several state-of-the-art trackers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1