{"title":"基于ai激活子空间的跨声速风扇叶片全局优化","authors":"Diego I. Lopez, T. Ghisu, S. Shahpar","doi":"10.1115/GT2021-59166","DOIUrl":null,"url":null,"abstract":"\n The increased need to design higher performing aerodynamic shapes has led to design optimisation cycles requiring high-fidelity CFD models and high-dimensional parametrisation schemes. The computational cost of employing global search algorithms on such scenarios has typically been prohibitive for most academic and industrial environments. In this paper, a novel strategy is presented that leverages the capabilities of Artificial Neural Networks for regressing complex unstructured data, while coupling them with dimensionality reduction algorithms. This approach enables employing global-based optimisation methods on high-dimensional applications through a reduced computational cost. This methodology is demonstrated on the efficiency optimisation of a modern jet engine fan blade with constrained pressure ratio. The outcome is compared against a state-of-the-art adjoint-based approach. Results indicate the strategy proposed achieves comparable improvements to its adjoint counterpart with a reduced computational cost, and can scale better to multi-objective optimisation applications.","PeriodicalId":257596,"journal":{"name":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Global Optimisation of a Transonic Fan Blade Through AI-Enabled Active Subspaces\",\"authors\":\"Diego I. Lopez, T. Ghisu, S. Shahpar\",\"doi\":\"10.1115/GT2021-59166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The increased need to design higher performing aerodynamic shapes has led to design optimisation cycles requiring high-fidelity CFD models and high-dimensional parametrisation schemes. The computational cost of employing global search algorithms on such scenarios has typically been prohibitive for most academic and industrial environments. In this paper, a novel strategy is presented that leverages the capabilities of Artificial Neural Networks for regressing complex unstructured data, while coupling them with dimensionality reduction algorithms. This approach enables employing global-based optimisation methods on high-dimensional applications through a reduced computational cost. This methodology is demonstrated on the efficiency optimisation of a modern jet engine fan blade with constrained pressure ratio. The outcome is compared against a state-of-the-art adjoint-based approach. Results indicate the strategy proposed achieves comparable improvements to its adjoint counterpart with a reduced computational cost, and can scale better to multi-objective optimisation applications.\",\"PeriodicalId\":257596,\"journal\":{\"name\":\"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2021-59166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: Turbomachinery — Axial Flow Fan and Compressor Aerodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2021-59166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global Optimisation of a Transonic Fan Blade Through AI-Enabled Active Subspaces
The increased need to design higher performing aerodynamic shapes has led to design optimisation cycles requiring high-fidelity CFD models and high-dimensional parametrisation schemes. The computational cost of employing global search algorithms on such scenarios has typically been prohibitive for most academic and industrial environments. In this paper, a novel strategy is presented that leverages the capabilities of Artificial Neural Networks for regressing complex unstructured data, while coupling them with dimensionality reduction algorithms. This approach enables employing global-based optimisation methods on high-dimensional applications through a reduced computational cost. This methodology is demonstrated on the efficiency optimisation of a modern jet engine fan blade with constrained pressure ratio. The outcome is compared against a state-of-the-art adjoint-based approach. Results indicate the strategy proposed achieves comparable improvements to its adjoint counterpart with a reduced computational cost, and can scale better to multi-objective optimisation applications.