{"title":"类不平衡学习蒙古那坎算法合成少数派过采样技术-标称(SMOTE-N)数据集","authors":"Y. Kurniawati","doi":"10.24002/jbi.v10i2.2441","DOIUrl":null,"url":null,"abstract":"Class Imbalance Learning (CIL) merupakan proses pembelajaran untuk representasi data dan ekstraksi informasi dengan distribusi data yang buruk untuk mendukung pembuatan keputusan yang efektif dalam proses pengambilan keputusan. SMOTE-N adalah salah satu pendekatan data-level dalam CIL mengunakan metode over-sampling. SMOTE-N menghasilkan instance sintesis untuk menyeimbangkan jumlah instance pada kelas minoritasnya. Penelitian ini mengaplikasikan SMOTE-N pada dataset Tuberculosis Anak (TB Anak) yang memiliki ketidakseimbangan kelas. Metode over-sampling dipilih untuk menghindari kehilangan informasi yang penting dikarenakan dataset TB Anak memiliki jumlah instance yang sedikit. Naïve Bayes Classifier digunakan untuk mengevaluasi model dari dataset yang sudah seimbang. Hasilnya menunjukkan bahwa SMOTE-N dapat meningkatkan kinerja pada CIL.","PeriodicalId":381749,"journal":{"name":"Jurnal Buana Informatika","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Class Imbalanced Learning Menggunakan Algoritma Synthetic Minority Over-sampling Technique – Nominal (SMOTE-N) pada Dataset Tuberculosis Anak\",\"authors\":\"Y. Kurniawati\",\"doi\":\"10.24002/jbi.v10i2.2441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class Imbalance Learning (CIL) merupakan proses pembelajaran untuk representasi data dan ekstraksi informasi dengan distribusi data yang buruk untuk mendukung pembuatan keputusan yang efektif dalam proses pengambilan keputusan. SMOTE-N adalah salah satu pendekatan data-level dalam CIL mengunakan metode over-sampling. SMOTE-N menghasilkan instance sintesis untuk menyeimbangkan jumlah instance pada kelas minoritasnya. Penelitian ini mengaplikasikan SMOTE-N pada dataset Tuberculosis Anak (TB Anak) yang memiliki ketidakseimbangan kelas. Metode over-sampling dipilih untuk menghindari kehilangan informasi yang penting dikarenakan dataset TB Anak memiliki jumlah instance yang sedikit. Naïve Bayes Classifier digunakan untuk mengevaluasi model dari dataset yang sudah seimbang. Hasilnya menunjukkan bahwa SMOTE-N dapat meningkatkan kinerja pada CIL.\",\"PeriodicalId\":381749,\"journal\":{\"name\":\"Jurnal Buana Informatika\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Buana Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24002/jbi.v10i2.2441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Buana Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/jbi.v10i2.2441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Class Imbalanced Learning Menggunakan Algoritma Synthetic Minority Over-sampling Technique – Nominal (SMOTE-N) pada Dataset Tuberculosis Anak
Class Imbalance Learning (CIL) merupakan proses pembelajaran untuk representasi data dan ekstraksi informasi dengan distribusi data yang buruk untuk mendukung pembuatan keputusan yang efektif dalam proses pengambilan keputusan. SMOTE-N adalah salah satu pendekatan data-level dalam CIL mengunakan metode over-sampling. SMOTE-N menghasilkan instance sintesis untuk menyeimbangkan jumlah instance pada kelas minoritasnya. Penelitian ini mengaplikasikan SMOTE-N pada dataset Tuberculosis Anak (TB Anak) yang memiliki ketidakseimbangan kelas. Metode over-sampling dipilih untuk menghindari kehilangan informasi yang penting dikarenakan dataset TB Anak memiliki jumlah instance yang sedikit. Naïve Bayes Classifier digunakan untuk mengevaluasi model dari dataset yang sudah seimbang. Hasilnya menunjukkan bahwa SMOTE-N dapat meningkatkan kinerja pada CIL.