人工生成和机器生成的密码强度评级:用户更信任哪一个?

S. Alqahtani, Shujun Li, Haiyue Yuan, P. Rusconi
{"title":"人工生成和机器生成的密码强度评级:用户更信任哪一个?","authors":"S. Alqahtani, Shujun Li, Haiyue Yuan, P. Rusconi","doi":"10.4108/eai.13-7-2018.162797","DOIUrl":null,"url":null,"abstract":"Proactive password checkers have been widely used to persuade users to select stronger passwords by providing machine-generated strength ratings of passwords. If such ratings do not match human-generated ratings of human users, there can be a loss of trust in PPCs. In order to study the effectiveness of PPCs, it would be useful to investigate how human users perceive such machine- and human-generated ratings in terms of their trust, which has been rarely studied in the literature. To fill this gap, we report a large-scale crowdsourcing study with over 1,000 workers. The participants were asked to choose which of the two ratings they trusted more. The passwords were selected based on a survey of over 100 human password experts. The results revealed that participants exhibited four distinct behavioral patterns when the passwords were hidden, and many changed their behaviors significantly after the passwords were disclosed, suggesting their reported trust was influenced by their own judgments.","PeriodicalId":335727,"journal":{"name":"EAI Endorsed Trans. Security Safety","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human-Generated and Machine-Generated Ratings of Password Strength: What Do Users Trust More?\",\"authors\":\"S. Alqahtani, Shujun Li, Haiyue Yuan, P. Rusconi\",\"doi\":\"10.4108/eai.13-7-2018.162797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proactive password checkers have been widely used to persuade users to select stronger passwords by providing machine-generated strength ratings of passwords. If such ratings do not match human-generated ratings of human users, there can be a loss of trust in PPCs. In order to study the effectiveness of PPCs, it would be useful to investigate how human users perceive such machine- and human-generated ratings in terms of their trust, which has been rarely studied in the literature. To fill this gap, we report a large-scale crowdsourcing study with over 1,000 workers. The participants were asked to choose which of the two ratings they trusted more. The passwords were selected based on a survey of over 100 human password experts. The results revealed that participants exhibited four distinct behavioral patterns when the passwords were hidden, and many changed their behaviors significantly after the passwords were disclosed, suggesting their reported trust was influenced by their own judgments.\",\"PeriodicalId\":335727,\"journal\":{\"name\":\"EAI Endorsed Trans. Security Safety\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Security Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.13-7-2018.162797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Security Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.13-7-2018.162797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

主动密码检查器已被广泛用于通过提供机器生成的密码强度评级来说服用户选择更强的密码。如果这样的评级与人类用户产生的评级不匹配,那么就会失去对ppc的信任。为了研究PPCs的有效性,调查人类用户如何看待这种机器和人类产生的信任评级将是有用的,这在文献中很少研究。为了填补这一空白,我们报告了一项有1000多名员工参与的大规模众包研究。参与者被要求选择他们更信任哪一个评级。这些密码是根据对100多名人类密码专家的调查选出的。结果显示,当密码被隐藏时,参与者表现出四种不同的行为模式,许多人在密码被披露后显著改变了他们的行为模式,这表明他们报告的信任受到他们自己判断的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human-Generated and Machine-Generated Ratings of Password Strength: What Do Users Trust More?
Proactive password checkers have been widely used to persuade users to select stronger passwords by providing machine-generated strength ratings of passwords. If such ratings do not match human-generated ratings of human users, there can be a loss of trust in PPCs. In order to study the effectiveness of PPCs, it would be useful to investigate how human users perceive such machine- and human-generated ratings in terms of their trust, which has been rarely studied in the literature. To fill this gap, we report a large-scale crowdsourcing study with over 1,000 workers. The participants were asked to choose which of the two ratings they trusted more. The passwords were selected based on a survey of over 100 human password experts. The results revealed that participants exhibited four distinct behavioral patterns when the passwords were hidden, and many changed their behaviors significantly after the passwords were disclosed, suggesting their reported trust was influenced by their own judgments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Systemic Security and Privacy Review: Attacks and Prevention Mechanisms over IOT Layers Mitigating Vulnerabilities in Closed Source Software Comparing Online Surveys for Cybersecurity: SONA and MTurk Dynamic Risk Assessment and Analysis Framework for Large-Scale Cyber-Physical Systems How data-sharing nudges influence people's privacy preferences: A machine learning-based analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1