使用颜色直方图增强SURF特征匹配

T. M. Barroso, P. Whelan
{"title":"使用颜色直方图增强SURF特征匹配","authors":"T. M. Barroso, P. Whelan","doi":"10.1109/IMVIP.2011.31","DOIUrl":null,"url":null,"abstract":"A strategy is proposed that enhances the local feature matching capabilities of the SURF descriptor by utilising colour histograms. The results compare variations of the RGB, HSV and Opponent colour spaces on a dataset of image pairs that undergo illumination, viewpoint and translational changes. This study finds the most appropriate colour space that enhances the distinctiveness of a descriptor when applied to the matching of corresponding features in arbitrary image sets.","PeriodicalId":179414,"journal":{"name":"2011 Irish Machine Vision and Image Processing Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhancing SURF Feature Matching Using Colour Histograms\",\"authors\":\"T. M. Barroso, P. Whelan\",\"doi\":\"10.1109/IMVIP.2011.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A strategy is proposed that enhances the local feature matching capabilities of the SURF descriptor by utilising colour histograms. The results compare variations of the RGB, HSV and Opponent colour spaces on a dataset of image pairs that undergo illumination, viewpoint and translational changes. This study finds the most appropriate colour space that enhances the distinctiveness of a descriptor when applied to the matching of corresponding features in arbitrary image sets.\",\"PeriodicalId\":179414,\"journal\":{\"name\":\"2011 Irish Machine Vision and Image Processing Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Irish Machine Vision and Image Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMVIP.2011.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Irish Machine Vision and Image Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2011.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种利用颜色直方图增强SURF描述符局部特征匹配能力的策略。结果比较了RGB、HSV和对手颜色空间在经历光照、视点和平移变化的图像对数据集上的变化。本研究找到了最合适的颜色空间,当应用于任意图像集的相应特征匹配时,可以增强描述符的独特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing SURF Feature Matching Using Colour Histograms
A strategy is proposed that enhances the local feature matching capabilities of the SURF descriptor by utilising colour histograms. The results compare variations of the RGB, HSV and Opponent colour spaces on a dataset of image pairs that undergo illumination, viewpoint and translational changes. This study finds the most appropriate colour space that enhances the distinctiveness of a descriptor when applied to the matching of corresponding features in arbitrary image sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Augmented Vision: Seeing beyond Field of View and Occlusions via Uncalibrated Visual Transfer from Multiple Viewpoints A Feature Set for Enhanced Automatic Segmentation of Hyperspectral Terahertz Images Cell Segmentation in Time-Lapse Phase Contrast Data Optic Flow Providing External Force for Active Contours in Visually Tracking Dense Cell Population Short Stereo Baseline Retroreflector Detection Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1