轴向矩计算的快速递归算法

R. Palenichka, M. Zaremba, C. Valenti
{"title":"轴向矩计算的快速递归算法","authors":"R. Palenichka, M. Zaremba, C. Valenti","doi":"10.1109/ICIAP.2001.956991","DOIUrl":null,"url":null,"abstract":"This paper describes a fast algorithm to compute local axial moments used for the detection of objects of interest in images. The basic idea is grounded on the elimination of redundant operations while computing axial moments for two neighboring angles of orientation. The main result is that the complexity of recursive computation of axial moments becomes independent of the total number of computed moments in a given point, i.e. it is of the order O(N) where N is the data size. This result is of great importance in computer vision since many feature extraction methods are based on the computation of axial moments. The experimental results confirm the time complexity and accuracy predicted by the theoretical analysis.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A fast recursive algorithm for the computation of axial moments\",\"authors\":\"R. Palenichka, M. Zaremba, C. Valenti\",\"doi\":\"10.1109/ICIAP.2001.956991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a fast algorithm to compute local axial moments used for the detection of objects of interest in images. The basic idea is grounded on the elimination of redundant operations while computing axial moments for two neighboring angles of orientation. The main result is that the complexity of recursive computation of axial moments becomes independent of the total number of computed moments in a given point, i.e. it is of the order O(N) where N is the data size. This result is of great importance in computer vision since many feature extraction methods are based on the computation of axial moments. The experimental results confirm the time complexity and accuracy predicted by the theoretical analysis.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.956991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.956991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了一种快速计算局部轴矩的算法,用于图像中感兴趣目标的检测。其基本思想是基于在计算两个相邻的取向角的轴向矩时消除冗余操作。主要结果是轴向弯矩递归计算的复杂性与给定点上计算的弯矩总数无关,即它的阶为O(N),其中N为数据大小。这一结果在计算机视觉中具有重要意义,因为许多特征提取方法都是基于轴向矩的计算。实验结果证实了理论分析预测的时间复杂度和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast recursive algorithm for the computation of axial moments
This paper describes a fast algorithm to compute local axial moments used for the detection of objects of interest in images. The basic idea is grounded on the elimination of redundant operations while computing axial moments for two neighboring angles of orientation. The main result is that the complexity of recursive computation of axial moments becomes independent of the total number of computed moments in a given point, i.e. it is of the order O(N) where N is the data size. This result is of great importance in computer vision since many feature extraction methods are based on the computation of axial moments. The experimental results confirm the time complexity and accuracy predicted by the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1