基于深度学习和最大相关熵准则的非高斯噪声MIMO通信系统信号检测

M. Pourmir, R. Monsefi, G. Hodtani
{"title":"基于深度学习和最大相关熵准则的非高斯噪声MIMO通信系统信号检测","authors":"M. Pourmir, R. Monsefi, G. Hodtani","doi":"10.5121/ijwmn.2022.14501","DOIUrl":null,"url":null,"abstract":"In this paper, we study signal detection in multi-input-multi output (MIMO) communications system with non-Gaussian noises such as Middleton Class A noise, Gaussian mixtures and alpha stable distributions, using several deep neural network-based detector models such as FULLYCONNECTED and DETNET detector. By applying information theoretic criterion of Maximum Correntropy , SVD analysis on the channel matrix and reducing network complexity, the suggested deep neural network detector performs well in environments with non-Gaussian noises and, compared to the deep neural network-based detector with MSE loss function, achieves better performance.","PeriodicalId":339265,"journal":{"name":"International Journal of Wireless & Mobile Networks","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signal Detection in MIMO Communications System with Non-Gaussian Noises based on Deep Learning and Maximum Correntropy Criterion\",\"authors\":\"M. Pourmir, R. Monsefi, G. Hodtani\",\"doi\":\"10.5121/ijwmn.2022.14501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study signal detection in multi-input-multi output (MIMO) communications system with non-Gaussian noises such as Middleton Class A noise, Gaussian mixtures and alpha stable distributions, using several deep neural network-based detector models such as FULLYCONNECTED and DETNET detector. By applying information theoretic criterion of Maximum Correntropy , SVD analysis on the channel matrix and reducing network complexity, the suggested deep neural network detector performs well in environments with non-Gaussian noises and, compared to the deep neural network-based detector with MSE loss function, achieves better performance.\",\"PeriodicalId\":339265,\"journal\":{\"name\":\"International Journal of Wireless & Mobile Networks\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Wireless & Mobile Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijwmn.2022.14501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wireless & Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijwmn.2022.14501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用几种基于深度神经网络的检测器模型(FULLYCONNECTED和DETNET检测器),研究了含有米德尔顿A类噪声、高斯混合噪声和α稳定分布等非高斯噪声的多输入多输出(MIMO)通信系统中的信号检测。通过应用最大相关熵的信息论准则、对信道矩阵进行SVD分析和降低网络复杂度,所提出的深度神经网络检测器在非高斯噪声环境下表现良好,与基于MSE损失函数的深度神经网络检测器相比,具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Signal Detection in MIMO Communications System with Non-Gaussian Noises based on Deep Learning and Maximum Correntropy Criterion
In this paper, we study signal detection in multi-input-multi output (MIMO) communications system with non-Gaussian noises such as Middleton Class A noise, Gaussian mixtures and alpha stable distributions, using several deep neural network-based detector models such as FULLYCONNECTED and DETNET detector. By applying information theoretic criterion of Maximum Correntropy , SVD analysis on the channel matrix and reducing network complexity, the suggested deep neural network detector performs well in environments with non-Gaussian noises and, compared to the deep neural network-based detector with MSE loss function, achieves better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modified O-RAN 5G Edge Reference Architecture using RNN DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA DESIGN OF FRACTAL-BASED TRI-BAND MICROSTRIP BANDPASS FILTER FOR ISM,WLAN AND WIMAX APPLICATIONS CFMS: A Cluster-based Convergecast Framework for Dense Multi-Sink Wireless Sensor Networks Laboratory Analysis on the Performance of 5G NSA Communication in a Suburban Scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1