Android设备的上下文自适应用户界面

Rahul Jain, Joy Bose, T. Arif
{"title":"Android设备的上下文自适应用户界面","authors":"Rahul Jain, Joy Bose, T. Arif","doi":"10.1109/INDCON.2013.6726014","DOIUrl":null,"url":null,"abstract":"In this paper we propose a framework to adapt the user interface (UI) of mobile computing devices like smartphones or tablets, based on the context or scenario in which user is present, and incorporating learning from past user actions. This will allow the user to perform actions in minimal steps and also reduce the clutter. The user interface in question can include application icons, menus, buttons window positioning or layout, color scheme and so on. The framework profiles the user device usage pattern and uses machine learning algorithms to predict the best possible screen configuration with respect to the user context. The prediction will improve with time and will provide best user experience possible to the user. To predict the utility of our model, we measure average response times for a number of users to access certain applications randomly on a smartphone, and on that basis predict time saved by adapting the UI in this way.","PeriodicalId":313185,"journal":{"name":"2013 Annual IEEE India Conference (INDICON)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Contextual adaptive user interface for Android devices\",\"authors\":\"Rahul Jain, Joy Bose, T. Arif\",\"doi\":\"10.1109/INDCON.2013.6726014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a framework to adapt the user interface (UI) of mobile computing devices like smartphones or tablets, based on the context or scenario in which user is present, and incorporating learning from past user actions. This will allow the user to perform actions in minimal steps and also reduce the clutter. The user interface in question can include application icons, menus, buttons window positioning or layout, color scheme and so on. The framework profiles the user device usage pattern and uses machine learning algorithms to predict the best possible screen configuration with respect to the user context. The prediction will improve with time and will provide best user experience possible to the user. To predict the utility of our model, we measure average response times for a number of users to access certain applications randomly on a smartphone, and on that basis predict time saved by adapting the UI in this way.\",\"PeriodicalId\":313185,\"journal\":{\"name\":\"2013 Annual IEEE India Conference (INDICON)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2013.6726014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2013.6726014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们提出了一个框架,以适应移动计算设备(如智能手机或平板电脑)的用户界面(UI),基于用户所在的上下文或场景,并结合从过去用户行为中学习。这将允许用户在最小的步骤中执行操作,并减少混乱。所讨论的用户界面可以包括应用程序图标、菜单、按钮、窗口定位或布局、配色方案等。该框架描述用户设备使用模式,并使用机器学习算法来预测关于用户上下文的最佳屏幕配置。预测将随着时间的推移而改进,并将为用户提供最佳的用户体验。为了预测我们模型的效用,我们测量了许多用户在智能手机上随机访问某些应用程序的平均响应时间,并在此基础上预测以这种方式调整UI所节省的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contextual adaptive user interface for Android devices
In this paper we propose a framework to adapt the user interface (UI) of mobile computing devices like smartphones or tablets, based on the context or scenario in which user is present, and incorporating learning from past user actions. This will allow the user to perform actions in minimal steps and also reduce the clutter. The user interface in question can include application icons, menus, buttons window positioning or layout, color scheme and so on. The framework profiles the user device usage pattern and uses machine learning algorithms to predict the best possible screen configuration with respect to the user context. The prediction will improve with time and will provide best user experience possible to the user. To predict the utility of our model, we measure average response times for a number of users to access certain applications randomly on a smartphone, and on that basis predict time saved by adapting the UI in this way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of sleep mode operation with modified non-exhaustive vacation queuing Performance analysis of next generation 3-D OFDM based optical access networks under various system impairments Hardware realization of high speed elliptic curve point multiplication using multiple Point Doublers and point adders Lifetime of a CDMA wireless sensor network with route diversity RF based train collision avoidance system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1