锂离子电池有效健康状态估计的交叉采样方法

S. Qaisar, Maram AlQathami
{"title":"锂离子电池有效健康状态估计的交叉采样方法","authors":"S. Qaisar, Maram AlQathami","doi":"10.1109/ICHQP46026.2020.9177915","DOIUrl":null,"url":null,"abstract":"Use of Li-Ion batteries is increasing exponentially. The Battery Management Systems (BMSs) are used to achieve a longer battery life and to maximize its usefulness. Contemporary BMSs are complex, creating a greater overhead consumption on the battery. The purpose of this work is to improve the power efficiency of the modern BMSs. To this end the processes of level-crossing sensing and processing are used. The emphasis is on developing a reliable, efficient, and real-time technique for estimating battery cells’ state of health (SoH). Using an original event-driven approach, the SoH is approximated. Comparison of the designed system is performed with traditional equivalents. Results show an outperformance of 4.7-fold in terms of compression gain and computational efficiency while maintaining sufficient precision of the SoH estimation.","PeriodicalId":436720,"journal":{"name":"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Level-Crossing Sampling for Li-Ion Batteries Effective State of Health Estimation\",\"authors\":\"S. Qaisar, Maram AlQathami\",\"doi\":\"10.1109/ICHQP46026.2020.9177915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Use of Li-Ion batteries is increasing exponentially. The Battery Management Systems (BMSs) are used to achieve a longer battery life and to maximize its usefulness. Contemporary BMSs are complex, creating a greater overhead consumption on the battery. The purpose of this work is to improve the power efficiency of the modern BMSs. To this end the processes of level-crossing sensing and processing are used. The emphasis is on developing a reliable, efficient, and real-time technique for estimating battery cells’ state of health (SoH). Using an original event-driven approach, the SoH is approximated. Comparison of the designed system is performed with traditional equivalents. Results show an outperformance of 4.7-fold in terms of compression gain and computational efficiency while maintaining sufficient precision of the SoH estimation.\",\"PeriodicalId\":436720,\"journal\":{\"name\":\"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHQP46026.2020.9177915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Conference on Harmonics and Quality of Power (ICHQP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHQP46026.2020.9177915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

锂离子电池的使用呈指数增长。电池管理系统(bms)用于实现更长的电池寿命,并最大限度地发挥其效用。当代的bms很复杂,对电池造成了更大的开销消耗。这项工作的目的是提高现代bms的功率效率。为此,采用了平交传感和处理过程。重点是开发一种可靠、高效、实时的电池健康状态(SoH)评估技术。使用原始的事件驱动的方法,SoH是近似的。将设计的系统与传统等效系统进行了比较。结果表明,在保持足够的SoH估计精度的同时,在压缩增益和计算效率方面的性能优于4.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Level-Crossing Sampling for Li-Ion Batteries Effective State of Health Estimation
Use of Li-Ion batteries is increasing exponentially. The Battery Management Systems (BMSs) are used to achieve a longer battery life and to maximize its usefulness. Contemporary BMSs are complex, creating a greater overhead consumption on the battery. The purpose of this work is to improve the power efficiency of the modern BMSs. To this end the processes of level-crossing sensing and processing are used. The emphasis is on developing a reliable, efficient, and real-time technique for estimating battery cells’ state of health (SoH). Using an original event-driven approach, the SoH is approximated. Comparison of the designed system is performed with traditional equivalents. Results show an outperformance of 4.7-fold in terms of compression gain and computational efficiency while maintaining sufficient precision of the SoH estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Important Considerations in Development of PV Inverter Models for High Frequency Emission (Supraharmonic) Studies Transient response of single-phase photovoltaic inverters to step changes in supply voltage distortion ICHQP 2020 Title Page Current Practice on Power Quality Legislation within European Transmission Systems – Results from Horizon 2020 Project MIGRATE Evaluation of Jacobian used in Simulation of Nonlinear Circuits in the Modified Harmonic Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1