马尔可夫切换偏态自回归模型的贝叶斯推断

Stéphane Lhuissier
{"title":"马尔可夫切换偏态自回归模型的贝叶斯推断","authors":"Stéphane Lhuissier","doi":"10.2139/ssrn.3442765","DOIUrl":null,"url":null,"abstract":"We examine Markov-switching autoregressive models where the commonly used Gaussian assumption for disturbances is replaced with a skew-normal distribution. This allows us to detect regime changes not only in the mean and the variance of a specified time series, but also in its skewness. A Bayesian framework is developed based on Markov chain Monte Carlo sampling. Our informative prior distributions lead to closed-form full conditional posterior distributions, whose sampling can be efficiently conducted within a Gibbs sampling scheme. The usefulness of the methodology is illustrated with a real-data example from U.S. stock markets.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian Inference for Markov-switching Skewed Autoregressive Models\",\"authors\":\"Stéphane Lhuissier\",\"doi\":\"10.2139/ssrn.3442765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine Markov-switching autoregressive models where the commonly used Gaussian assumption for disturbances is replaced with a skew-normal distribution. This allows us to detect regime changes not only in the mean and the variance of a specified time series, but also in its skewness. A Bayesian framework is developed based on Markov chain Monte Carlo sampling. Our informative prior distributions lead to closed-form full conditional posterior distributions, whose sampling can be efficiently conducted within a Gibbs sampling scheme. The usefulness of the methodology is illustrated with a real-data example from U.S. stock markets.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3442765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3442765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了马尔可夫切换自回归模型,其中常用的高斯假设干扰被斜正态分布取代。这使我们不仅可以检测特定时间序列的均值和方差,还可以检测其偏度的变化。提出了一种基于马尔可夫链蒙特卡罗采样的贝叶斯框架。我们的信息先验分布导致封闭形式的完全条件后验分布,其抽样可以有效地在吉布斯抽样方案中进行。美国股市的一个真实数据例子说明了这种方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Inference for Markov-switching Skewed Autoregressive Models
We examine Markov-switching autoregressive models where the commonly used Gaussian assumption for disturbances is replaced with a skew-normal distribution. This allows us to detect regime changes not only in the mean and the variance of a specified time series, but also in its skewness. A Bayesian framework is developed based on Markov chain Monte Carlo sampling. Our informative prior distributions lead to closed-form full conditional posterior distributions, whose sampling can be efficiently conducted within a Gibbs sampling scheme. The usefulness of the methodology is illustrated with a real-data example from U.S. stock markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1