使用迁移学习的鸟类物种识别移动应用程序

Srijan, Samriddhi, Deepak Gupta
{"title":"使用迁移学习的鸟类物种识别移动应用程序","authors":"Srijan, Samriddhi, Deepak Gupta","doi":"10.1109/IICAIET51634.2021.9573796","DOIUrl":null,"url":null,"abstract":"Bird populations are declining worldwide, and several species have gone extinct in historical times. Hence for ornithologists and birdwatchers, exploration of rarely found bird species has become a challenging task. We have developed a deep learning based android application to help users recognize 260 Species of birds, making bird classification a lot more user-friendly. In this paper, we use Convolutional Neural Networks (CNN) pre-trained on ImageNet Dataset as freeze layers of the network, and train the last output layer, which consists of 260 different classes. CNN models such as EfficientNet-lite0, Xception, MobilenetV2, ResNet-50, InceptionV3, and InceptionResNetV2 have been compared based on the accuracy, and working of the mobile app is explained. Maximum accuracy of 99.82% on train data and 98.61% on test data is achieved.","PeriodicalId":234229,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"562 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mobile Application for Bird Species Identification Using Transfer Learning\",\"authors\":\"Srijan, Samriddhi, Deepak Gupta\",\"doi\":\"10.1109/IICAIET51634.2021.9573796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bird populations are declining worldwide, and several species have gone extinct in historical times. Hence for ornithologists and birdwatchers, exploration of rarely found bird species has become a challenging task. We have developed a deep learning based android application to help users recognize 260 Species of birds, making bird classification a lot more user-friendly. In this paper, we use Convolutional Neural Networks (CNN) pre-trained on ImageNet Dataset as freeze layers of the network, and train the last output layer, which consists of 260 different classes. CNN models such as EfficientNet-lite0, Xception, MobilenetV2, ResNet-50, InceptionV3, and InceptionResNetV2 have been compared based on the accuracy, and working of the mobile app is explained. Maximum accuracy of 99.82% on train data and 98.61% on test data is achieved.\",\"PeriodicalId\":234229,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"562 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET51634.2021.9573796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET51634.2021.9573796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

世界范围内的鸟类数量正在下降,一些物种在历史上已经灭绝。因此,对于鸟类学家和观鸟者来说,探索罕见的鸟类物种已经成为一项具有挑战性的任务。我们开发了一个基于深度学习的android应用程序,帮助用户识别260种鸟类,使鸟类分类更加人性化。在本文中,我们使用在ImageNet数据集上预训练的卷积神经网络(CNN)作为网络的冻结层,并训练由260个不同的类组成的最后一个输出层。对CNN模型(EfficientNet-lite0、Xception、MobilenetV2、ResNet-50、InceptionV3、InceptionResNetV2)的准确率进行了比较,并对移动应用的工作原理进行了说明。列车数据和测试数据的最高准确率分别达到99.82%和98.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mobile Application for Bird Species Identification Using Transfer Learning
Bird populations are declining worldwide, and several species have gone extinct in historical times. Hence for ornithologists and birdwatchers, exploration of rarely found bird species has become a challenging task. We have developed a deep learning based android application to help users recognize 260 Species of birds, making bird classification a lot more user-friendly. In this paper, we use Convolutional Neural Networks (CNN) pre-trained on ImageNet Dataset as freeze layers of the network, and train the last output layer, which consists of 260 different classes. CNN models such as EfficientNet-lite0, Xception, MobilenetV2, ResNet-50, InceptionV3, and InceptionResNetV2 have been compared based on the accuracy, and working of the mobile app is explained. Maximum accuracy of 99.82% on train data and 98.61% on test data is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Analytics on Twitter Text-based Public Sentiment for Covid-19 Vaccine: A Machine Learning Approach Eye-Tank: Monitoring and Predicting Water and pH Level in Smart Farming Particle Swarm Optimization for Tuning Power System Stabilizer towards Transient Stability Improvement in Power System Network Multi-Scale Texture Analysis For Finger Vein Anti-Spoofing Utilization of Response Surface Methodology and Regression Model in Optimizing Bioretention Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1