{"title":"正式验证了32位和64位整数除法使用双精度浮点运算","authors":"D. Monniaux, Alice Pain","doi":"10.1109/ARITH54963.2022.00032","DOIUrl":null,"url":null,"abstract":"Some recent processors are not equipped with an integer division unit. Compilers then implement division by a call to a special function supplied by the processor designers, which implements division by a loop producing one bit of quotient per iteration. This hinders compiler optimizations and results in non-constant time computation, which is a problem in some applications. We advocate instead using the processor's floating-point unit, and propose code that the compiler can easily interleave with other computations. We fully proved the correctness of our algorithm, which mixes floating-point and fixed-bitwidth integer computations, using the Coq proof assistant and successfully integrated it into the CompCert formally verified compiler.","PeriodicalId":268661,"journal":{"name":"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formally verified 32- and 64-bit integer division using double-precision floating-point arithmetic\",\"authors\":\"D. Monniaux, Alice Pain\",\"doi\":\"10.1109/ARITH54963.2022.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some recent processors are not equipped with an integer division unit. Compilers then implement division by a call to a special function supplied by the processor designers, which implements division by a loop producing one bit of quotient per iteration. This hinders compiler optimizations and results in non-constant time computation, which is a problem in some applications. We advocate instead using the processor's floating-point unit, and propose code that the compiler can easily interleave with other computations. We fully proved the correctness of our algorithm, which mixes floating-point and fixed-bitwidth integer computations, using the Coq proof assistant and successfully integrated it into the CompCert formally verified compiler.\",\"PeriodicalId\":268661,\"journal\":{\"name\":\"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH54963.2022.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH54963.2022.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formally verified 32- and 64-bit integer division using double-precision floating-point arithmetic
Some recent processors are not equipped with an integer division unit. Compilers then implement division by a call to a special function supplied by the processor designers, which implements division by a loop producing one bit of quotient per iteration. This hinders compiler optimizations and results in non-constant time computation, which is a problem in some applications. We advocate instead using the processor's floating-point unit, and propose code that the compiler can easily interleave with other computations. We fully proved the correctness of our algorithm, which mixes floating-point and fixed-bitwidth integer computations, using the Coq proof assistant and successfully integrated it into the CompCert formally verified compiler.