不同光谱和空间分辨率高光谱数据合并策略

R. Illmann, M. Rosenberger, G. Notni
{"title":"不同光谱和空间分辨率高光谱数据合并策略","authors":"R. Illmann, M. Rosenberger, G. Notni","doi":"10.1109/DICTA.2018.8615875","DOIUrl":null,"url":null,"abstract":"Increasing applications for hyperspectral measurement make increasing demands on the handling of big measurement data. Push broom imaging is a promising measurement technique for many applications. The combined registration of hyperspectral and spatial data reveal a lot of information about the measurement object. An exemplary well-known further processing technique is to extract feature vectors from such a dataset. For increasing quality and quantity of possible information, it is advantageously to have a spectral wide range dataset. Nevertheless, different spectral data mainly needs different imaging systems. A major problem in using hyperspectral data from different hyperspectral imaging systems is the combination of those to a wide range data set, called spectral cube. The aim of this work is to show which methods are principal conceivable and usable under different circumstances for merging such datasets with a profound analytical view. In addition, some work that was done in the theory and the design of a calibration model prototype is included.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strategies for Merging Hyperspectral Data of Different Spectral and Spatial Resoultion\",\"authors\":\"R. Illmann, M. Rosenberger, G. Notni\",\"doi\":\"10.1109/DICTA.2018.8615875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing applications for hyperspectral measurement make increasing demands on the handling of big measurement data. Push broom imaging is a promising measurement technique for many applications. The combined registration of hyperspectral and spatial data reveal a lot of information about the measurement object. An exemplary well-known further processing technique is to extract feature vectors from such a dataset. For increasing quality and quantity of possible information, it is advantageously to have a spectral wide range dataset. Nevertheless, different spectral data mainly needs different imaging systems. A major problem in using hyperspectral data from different hyperspectral imaging systems is the combination of those to a wide range data set, called spectral cube. The aim of this work is to show which methods are principal conceivable and usable under different circumstances for merging such datasets with a profound analytical view. In addition, some work that was done in the theory and the design of a calibration model prototype is included.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高光谱测量的应用日益增多,对大测量数据的处理提出了更高的要求。推扫帚成像是一种很有前途的测量技术,应用广泛。高光谱数据与空间数据的结合配准揭示了被测目标的大量信息。一个典型的众所周知的进一步处理技术是从这样的数据集中提取特征向量。为了提高可能信息的质量和数量,具有光谱宽范围的数据集是有利的。然而,不同的光谱数据主要需要不同的成像系统。使用来自不同高光谱成像系统的高光谱数据的一个主要问题是将这些数据组合成一个大范围的数据集,称为光谱立方体。这项工作的目的是展示哪些方法是主要的可想象的和可用的,在不同的情况下合并这些数据集具有深刻的分析观点。此外,还介绍了在理论研究和标定模型样机设计方面所做的一些工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategies for Merging Hyperspectral Data of Different Spectral and Spatial Resoultion
Increasing applications for hyperspectral measurement make increasing demands on the handling of big measurement data. Push broom imaging is a promising measurement technique for many applications. The combined registration of hyperspectral and spatial data reveal a lot of information about the measurement object. An exemplary well-known further processing technique is to extract feature vectors from such a dataset. For increasing quality and quantity of possible information, it is advantageously to have a spectral wide range dataset. Nevertheless, different spectral data mainly needs different imaging systems. A major problem in using hyperspectral data from different hyperspectral imaging systems is the combination of those to a wide range data set, called spectral cube. The aim of this work is to show which methods are principal conceivable and usable under different circumstances for merging such datasets with a profound analytical view. In addition, some work that was done in the theory and the design of a calibration model prototype is included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1