一种采用蓝牙通信的双通道无线心电图仪系统

Rahma Diah Zuhroini, D. Titisari, Torib Hamzah, T. K. Kho
{"title":"一种采用蓝牙通信的双通道无线心电图仪系统","authors":"Rahma Diah Zuhroini, D. Titisari, Torib Hamzah, T. K. Kho","doi":"10.35882/jeeemi.v3i3.3","DOIUrl":null,"url":null,"abstract":"Health problems with cardiovascular system disorders are still ranked high, according to data from the WHO reported that there are about 31% of causes of death globally are cardiovascular diseases. The purpose of this study was to develop a 12 lead electrocardiograph with 2 displays and the HC-05 as a real-time transmitter of heart signal data. The electrocardiogram signal is obtained from the wiretapping by attaching the electrode cable to the Lead I, Lead II, Lead III, aVR, aVL, and aVF leads, then processed on IC AD620, HPF and LPF filters and non-inverting amplifiers and then processed using Arduino UNO for further display. in the form of a signal on the Delphi 7 application. The research method is to measure the heart signal on the ECG Simulator, by testing several BPMs, namely 30, 60, 120 and 240 on each lead. After testing the signal equation at the 0.5mV setting by calculating the error rate, the highest error value is obtained in lead I, lead aVL and aVF of 7.14% and the smallest error is 3.57% error in lead III. Then at the 1mV setting by calculating the error rate, the highest error value in lead aVL is 7.14% and the smallest error is 2.36%. at the 2mV setting by calculating the error rate, the highest error value is obtained in leads aVL and aVF of 5.71% and the smallest error is obtained by an error of 2.1% in lead II. the results of this study are implemented so that in the future an ECG examination can be carried out and then monitored remotely like a doctor's room because the data communication uses bluetooth.","PeriodicalId":369032,"journal":{"name":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Two Channels Wireless Electrocardiograph System Using Bluetooth Communication\",\"authors\":\"Rahma Diah Zuhroini, D. Titisari, Torib Hamzah, T. K. Kho\",\"doi\":\"10.35882/jeeemi.v3i3.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Health problems with cardiovascular system disorders are still ranked high, according to data from the WHO reported that there are about 31% of causes of death globally are cardiovascular diseases. The purpose of this study was to develop a 12 lead electrocardiograph with 2 displays and the HC-05 as a real-time transmitter of heart signal data. The electrocardiogram signal is obtained from the wiretapping by attaching the electrode cable to the Lead I, Lead II, Lead III, aVR, aVL, and aVF leads, then processed on IC AD620, HPF and LPF filters and non-inverting amplifiers and then processed using Arduino UNO for further display. in the form of a signal on the Delphi 7 application. The research method is to measure the heart signal on the ECG Simulator, by testing several BPMs, namely 30, 60, 120 and 240 on each lead. After testing the signal equation at the 0.5mV setting by calculating the error rate, the highest error value is obtained in lead I, lead aVL and aVF of 7.14% and the smallest error is 3.57% error in lead III. Then at the 1mV setting by calculating the error rate, the highest error value in lead aVL is 7.14% and the smallest error is 2.36%. at the 2mV setting by calculating the error rate, the highest error value is obtained in leads aVL and aVF of 5.71% and the smallest error is obtained by an error of 2.1% in lead II. the results of this study are implemented so that in the future an ECG examination can be carried out and then monitored remotely like a doctor's room because the data communication uses bluetooth.\",\"PeriodicalId\":369032,\"journal\":{\"name\":\"Journal of Electronics, Electromedical Engineering, and Medical Informatics\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronics, Electromedical Engineering, and Medical Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35882/jeeemi.v3i3.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35882/jeeemi.v3i3.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

根据世界卫生组织的数据,心血管系统疾病的健康问题仍然排名很高,全球约有31%的死亡原因是心血管疾病。本研究的目的是开发一种带有2个显示器的12导联心电图仪,并将HC-05作为心脏信号数据的实时发射器。通过将电极电缆连接到引线I、引线II、引线III、aVR、aVL和aVF引线上获得窃听后的心电图信号,然后在IC AD620、HPF和LPF滤波器以及非反相放大器上进行处理,然后使用Arduino UNO进行处理,进一步显示。在Delphi 7应用程序上以信号的形式。研究方法是在心电模拟器上测量心电信号,在每条导联上分别测试30、60、120和240个bpm。通过计算错误率对0.5mV设定下的信号方程进行测试,得出引线I、引线aVL和aVF的误差值最大,为7.14%,引线III的误差最小,为3.57%。通过计算错误率,在1mV设置下,导联aVL的最大误差值为7.14%,最小误差值为2.36%。通过计算错误率,在2mV设置下,导联aVL和aVF的误差值最大,为5.71%,导联II的误差最小,为2.1%。由于数据通信采用蓝牙技术,因此本研究的结果可以实现,以便将来进行心电图检查,然后像医生的房间一样远程监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Two Channels Wireless Electrocardiograph System Using Bluetooth Communication
Health problems with cardiovascular system disorders are still ranked high, according to data from the WHO reported that there are about 31% of causes of death globally are cardiovascular diseases. The purpose of this study was to develop a 12 lead electrocardiograph with 2 displays and the HC-05 as a real-time transmitter of heart signal data. The electrocardiogram signal is obtained from the wiretapping by attaching the electrode cable to the Lead I, Lead II, Lead III, aVR, aVL, and aVF leads, then processed on IC AD620, HPF and LPF filters and non-inverting amplifiers and then processed using Arduino UNO for further display. in the form of a signal on the Delphi 7 application. The research method is to measure the heart signal on the ECG Simulator, by testing several BPMs, namely 30, 60, 120 and 240 on each lead. After testing the signal equation at the 0.5mV setting by calculating the error rate, the highest error value is obtained in lead I, lead aVL and aVF of 7.14% and the smallest error is 3.57% error in lead III. Then at the 1mV setting by calculating the error rate, the highest error value in lead aVL is 7.14% and the smallest error is 2.36%. at the 2mV setting by calculating the error rate, the highest error value is obtained in leads aVL and aVF of 5.71% and the smallest error is obtained by an error of 2.1% in lead II. the results of this study are implemented so that in the future an ECG examination can be carried out and then monitored remotely like a doctor's room because the data communication uses bluetooth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting the Need for Cardiovascular Surgery: A Comparative Study of Machine Learning Models A Comparative Study of Convolutional Neural Network in Detecting Blast Cells for Diagnose Acute Myeloid Leukemia A Comparative Study of Machine Learning Methods for Baby Cry Detection Using MFCC Features Analysis of Multimodal Biosignals during Surprise Conditions Correlates with Psychological Traits Evaluation of two biometric access control systems using the Susceptible-Infected-Recovered model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1