非说话人语音识别中的广义循环变换

Florian Müller, Eugene Belilovsky, A. Mertins
{"title":"非说话人语音识别中的广义循环变换","authors":"Florian Müller, Eugene Belilovsky, A. Mertins","doi":"10.1109/ASRU.2009.5373284","DOIUrl":null,"url":null,"abstract":"A feature extraction method is presented that is robust against vocal tract length changes. It uses the generalized cyclic transformations primarily used within the field of pattern recognition. In matching training and testing conditions the resulting accuracies are comparable to the ones of MFCCs. However, in mismatching training and testing conditions with respect to the mean vocal tract length the presented features significantly outperform the MFCCs.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generalized cyclic transformations in speaker-independent speech recognition\",\"authors\":\"Florian Müller, Eugene Belilovsky, A. Mertins\",\"doi\":\"10.1109/ASRU.2009.5373284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A feature extraction method is presented that is robust against vocal tract length changes. It uses the generalized cyclic transformations primarily used within the field of pattern recognition. In matching training and testing conditions the resulting accuracies are comparable to the ones of MFCCs. However, in mismatching training and testing conditions with respect to the mean vocal tract length the presented features significantly outperform the MFCCs.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"338 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5373284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种对声道长度变化具有鲁棒性的特征提取方法。它使用了模式识别领域中主要使用的广义循环变换。在匹配训练和测试条件下,得到的准确度与mfccc相当。然而,在不匹配的训练和测试条件下,相对于平均声道长度,所呈现的特征明显优于mfcc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized cyclic transformations in speaker-independent speech recognition
A feature extraction method is presented that is robust against vocal tract length changes. It uses the generalized cyclic transformations primarily used within the field of pattern recognition. In matching training and testing conditions the resulting accuracies are comparable to the ones of MFCCs. However, in mismatching training and testing conditions with respect to the mean vocal tract length the presented features significantly outperform the MFCCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of OOV words by combining acoustic confidence measures with linguistic features Automatic translation from parallel speech: Simultaneous interpretation as MT training data Local and global models for spontaneous speech segment detection and characterization Automatic punctuation generation for speech Response timing generation and response type selection for a spontaneous spoken dialog system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1