基于人脸识别的性别分类

Terishka Bissoon, Serestina Viriri
{"title":"基于人脸识别的性别分类","authors":"Terishka Bissoon, Serestina Viriri","doi":"10.1109/ICASTECH.2013.6707489","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of gender classification using the method of Principal Component Analysis (PCA) for face recognition and classification of human faces. The use of the PCA algorithm has a maximum success rate of 82%. The gender classification system is then improved by using the Linear Discriminant Analysis (LDA. This algorithm has a machine-learning framework by which it trains on a database and using this trained environment to predict the outcome of other images. The classification is restricted to two classes - male and female. Upon using LDA, the success rate increased to approximately 85%. The database used in this paper for the training and testing of images is called the FERET database.","PeriodicalId":173317,"journal":{"name":"2013 International Conference on Adaptive Science and Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Gender classification using face recognition\",\"authors\":\"Terishka Bissoon, Serestina Viriri\",\"doi\":\"10.1109/ICASTECH.2013.6707489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issue of gender classification using the method of Principal Component Analysis (PCA) for face recognition and classification of human faces. The use of the PCA algorithm has a maximum success rate of 82%. The gender classification system is then improved by using the Linear Discriminant Analysis (LDA. This algorithm has a machine-learning framework by which it trains on a database and using this trained environment to predict the outcome of other images. The classification is restricted to two classes - male and female. Upon using LDA, the success rate increased to approximately 85%. The database used in this paper for the training and testing of images is called the FERET database.\",\"PeriodicalId\":173317,\"journal\":{\"name\":\"2013 International Conference on Adaptive Science and Technology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Adaptive Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASTECH.2013.6707489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Adaptive Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASTECH.2013.6707489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究了基于主成分分析(PCA)的人脸识别和人脸分类的性别分类问题。使用PCA算法的最大成功率为82%。然后利用线性判别分析(LDA)对性别分类系统进行改进。该算法有一个机器学习框架,通过该框架,它在数据库上进行训练,并使用这个训练过的环境来预测其他图像的结果。分类仅限于两类——男性和女性。使用LDA后,成功率提高到约85%。本文中用于图像训练和测试的数据库称为FERET数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gender classification using face recognition
This paper addresses the issue of gender classification using the method of Principal Component Analysis (PCA) for face recognition and classification of human faces. The use of the PCA algorithm has a maximum success rate of 82%. The gender classification system is then improved by using the Linear Discriminant Analysis (LDA. This algorithm has a machine-learning framework by which it trains on a database and using this trained environment to predict the outcome of other images. The classification is restricted to two classes - male and female. Upon using LDA, the success rate increased to approximately 85%. The database used in this paper for the training and testing of images is called the FERET database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An analysis methodology for impact of new technology in complex sociotechnical systems Semi-supervised local feature extraction of hyperspectral images over urban areas A quality of service aware multi-level strategy for selection of optimal web service Service desk link into IT asset disposal: A case of a discarded IT asset Cloud-based security mechanisms for critical information infrastructure protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1