用颗粒龙格-库塔方法建模动态过程

T. Co
{"title":"用颗粒龙格-库塔方法建模动态过程","authors":"T. Co","doi":"10.1109/GrC.2007.100","DOIUrl":null,"url":null,"abstract":"By incorporating the Runge-Kutta methods with functions defined within the frameworks of multilayered granular domains, a nonlinear continuous-time dynamic process can be efficiently modeled. The several layers allow for the construction of models spanning different granular size to be used for applications that require different levels of precision and efficiency. In this paper, we discuss a particular implementation of this approach using multilinear interpolation functions.","PeriodicalId":259430,"journal":{"name":"2007 IEEE International Conference on Granular Computing (GRC 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Dynamic Processes Using Granular Runge-Kutta Methods\",\"authors\":\"T. Co\",\"doi\":\"10.1109/GrC.2007.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By incorporating the Runge-Kutta methods with functions defined within the frameworks of multilayered granular domains, a nonlinear continuous-time dynamic process can be efficiently modeled. The several layers allow for the construction of models spanning different granular size to be used for applications that require different levels of precision and efficiency. In this paper, we discuss a particular implementation of this approach using multilinear interpolation functions.\",\"PeriodicalId\":259430,\"journal\":{\"name\":\"2007 IEEE International Conference on Granular Computing (GRC 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Granular Computing (GRC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GrC.2007.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Granular Computing (GRC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GrC.2007.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将龙格-库塔方法与在多层颗粒域框架内定义的函数相结合,可以有效地对非线性连续动态过程进行建模。这几个层允许构建跨越不同粒度的模型,用于需要不同精度和效率级别的应用程序。在本文中,我们讨论了使用多线性插值函数的这种方法的一个特殊实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Dynamic Processes Using Granular Runge-Kutta Methods
By incorporating the Runge-Kutta methods with functions defined within the frameworks of multilayered granular domains, a nonlinear continuous-time dynamic process can be efficiently modeled. The several layers allow for the construction of models spanning different granular size to be used for applications that require different levels of precision and efficiency. In this paper, we discuss a particular implementation of this approach using multilinear interpolation functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study of the Query Target of the Chinese Query Sentence Intelligent Search Engine Based on Formal Concept Analysis Analyzing Software System Quality Risk Using Bayesian Belief Network Reasoning Algorithm of Multi-Value Fuzzy Causality Diagram Based on Unitizing Coefficient Application of Granular Computing in Extension Criminal Reconnaissance System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1