利用易碎位巧合改进虹膜识别

K. Hollingsworth, K. W. Bowyer, P. Flynn
{"title":"利用易碎位巧合改进虹膜识别","authors":"K. Hollingsworth, K. W. Bowyer, P. Flynn","doi":"10.1109/BTAS.2009.5339036","DOIUrl":null,"url":null,"abstract":"The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are of equal value. A bit is deemed fragile if it varies in value across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score-fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. This is the first and only work that we are aware of to use the coincidence of fragile bit locations to improve the accuracy of matches.","PeriodicalId":325900,"journal":{"name":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Using fragile bit coincidence to improve iris recognition\",\"authors\":\"K. Hollingsworth, K. W. Bowyer, P. Flynn\",\"doi\":\"10.1109/BTAS.2009.5339036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are of equal value. A bit is deemed fragile if it varies in value across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score-fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. This is the first and only work that we are aware of to use the coincidence of fragile bit locations to improve the accuracy of matches.\",\"PeriodicalId\":325900,\"journal\":{\"name\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2009.5339036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2009.5339036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

最常见的虹膜生物识别算法使用二进制虹膜代码表示虹膜的纹理。并不是虹膜码中所有的比特都具有相同的价值。如果由同一虹膜的不同图像生成的虹膜代码中的值不同,则该位被认为是脆弱的。先前的研究表明,掩盖这些脆弱的比特可以提高虹膜识别性能。我们不是完全忽略脆弱比特,而是考虑从脆弱比特中可以获得哪些有益的信息。我们发现,在同一只眼睛的不同虹膜编码中,易碎位的位置往往是一致的。我们提出了一种度量,称为脆弱位距离,它定量地测量了两个虹膜码中脆弱位模式的一致性。我们发现脆弱比特距离和汉明距离的分数融合比单独汉明距离的识别效果更好。这是我们所知道的第一个也是唯一一个使用脆弱位位置的巧合来提高匹配精度的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using fragile bit coincidence to improve iris recognition
The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are of equal value. A bit is deemed fragile if it varies in value across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score-fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. This is the first and only work that we are aware of to use the coincidence of fragile bit locations to improve the accuracy of matches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-algorithm fusion with template protection Improvements in Active Appearance Model based synthetic age progression for adult aging A study on security evaluation methodology for image-based biometrics authentication systems Pitfall of the Detection Rate Optimized Bit Allocation within template protection and a remedy Quality based rank-level fusion in multibiometric systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1