热电纳米线阵列特性的测量

J. Sharp, A. Thompson, L. Trahey, A. Stacy
{"title":"热电纳米线阵列特性的测量","authors":"J. Sharp, A. Thompson, L. Trahey, A. Stacy","doi":"10.1109/ICT.2005.1519893","DOIUrl":null,"url":null,"abstract":"Numerous groups are studying nanowires of Bi/Sb and [Bi/Sb]2[Te/Se]3 as possible high ZT materials. Relative to the corresponding bulk compositions, it is feasible that nanowires will yield both improved electrical properties and reduced thermal conductivity. The measurement of nanowire properties is difficult and various approaches should be considered. We are attempting to infer the thermoelectric transport properties of nanowire arrays by making and testing miniature couples. The couples contain a nanowire array leg and a bulk material leg, and we measure AC resistance, DC voltage, ∆T and Seebeck coefficient. Motivation A growing body of theoretical and experimental work suggests that greater thermoelectric performance might be found in nanostructured, low-dimensional materials. [1] Many of these studies have focused on superlattices, which offer the opportunity for precise experimental control and relatively straightforward modeling. From the viewpoint of","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Measurement of thermoelectric nanowire array properties\",\"authors\":\"J. Sharp, A. Thompson, L. Trahey, A. Stacy\",\"doi\":\"10.1109/ICT.2005.1519893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous groups are studying nanowires of Bi/Sb and [Bi/Sb]2[Te/Se]3 as possible high ZT materials. Relative to the corresponding bulk compositions, it is feasible that nanowires will yield both improved electrical properties and reduced thermal conductivity. The measurement of nanowire properties is difficult and various approaches should be considered. We are attempting to infer the thermoelectric transport properties of nanowire arrays by making and testing miniature couples. The couples contain a nanowire array leg and a bulk material leg, and we measure AC resistance, DC voltage, ∆T and Seebeck coefficient. Motivation A growing body of theoretical and experimental work suggests that greater thermoelectric performance might be found in nanostructured, low-dimensional materials. [1] Many of these studies have focused on superlattices, which offer the opportunity for precise experimental control and relatively straightforward modeling. From the viewpoint of\",\"PeriodicalId\":422400,\"journal\":{\"name\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2005.1519893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

许多研究小组正在研究Bi/Sb和[Bi/Sb]2[Te/Se]3纳米线作为可能的高ZT材料。相对于相应的块体成分,纳米线可以提高电性能并降低导热性。纳米线性能的测量是困难的,需要考虑多种方法。我们正试图通过制造和测试微型电偶来推断纳米线阵列的热电输运特性。该对包含一个纳米线阵列腿和一个大块材料腿,我们测量了交流电阻、直流电压、∆T和塞贝克系数。越来越多的理论和实验工作表明,在纳米结构的低维材料中可能会发现更高的热电性能。许多这些研究都集中在超晶格上,这为精确的实验控制和相对简单的建模提供了机会。从…的观点来看
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurement of thermoelectric nanowire array properties
Numerous groups are studying nanowires of Bi/Sb and [Bi/Sb]2[Te/Se]3 as possible high ZT materials. Relative to the corresponding bulk compositions, it is feasible that nanowires will yield both improved electrical properties and reduced thermal conductivity. The measurement of nanowire properties is difficult and various approaches should be considered. We are attempting to infer the thermoelectric transport properties of nanowire arrays by making and testing miniature couples. The couples contain a nanowire array leg and a bulk material leg, and we measure AC resistance, DC voltage, ∆T and Seebeck coefficient. Motivation A growing body of theoretical and experimental work suggests that greater thermoelectric performance might be found in nanostructured, low-dimensional materials. [1] Many of these studies have focused on superlattices, which offer the opportunity for precise experimental control and relatively straightforward modeling. From the viewpoint of
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microstructure and high-temperature thermoelectric properties of Cu-doped NaCo/sub 2/O/sub 4/ Comparison of skutterudites and advanced thin-film B/sub 4/C/B/sub 9/C and Si/SiGe materials in advanced thermoelectric energy recovery systems Research on the novel high-intensity thermoelectric generator and its application on HEV Evaluation of monolithic and segmented thermoelectric materials using a potentiometer-type high accuracy generator test facility Comparison of structural parameters for Zn/sub 4-x/Cd/sub x/Sb/sub 3/ compounds analyzed by the Rietveld method using two crystallographic models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1