基于不同本体聚合的医学诊断模糊推理

H. Fujita, I. Rudas, J. Fodor, M. Kurematsu, J. Hakura
{"title":"基于不同本体聚合的医学诊断模糊推理","authors":"H. Fujita, I. Rudas, J. Fodor, M. Kurematsu, J. Hakura","doi":"10.1109/SACI.2012.6249991","DOIUrl":null,"url":null,"abstract":"The paper discusses reasoning application for decision making in medical diagnosis. This is to reason on medical concepts that are viewed on two type ontologies; namely physical and mental. We highlighted in this position paper issues on fuzzy reasoning by aggregating two types of ontologies that are used to formalize a patient state: mental ontology reflecting the patient mental behavior due to certain disorder and physical ontology reflecting the observed physical behavior exhibited through disorder. Similarity matching is used to find the similarity between fuzzy set reflected to mental fuzzy ontology, and physical fuzzy ontology. The alignment is projected on medical ontology to rank attributes for decision making. We apply aggregate function for ranking attributes related to physical object. In the same time, we apply harmonic power average aggregate function fuzzy for ranking attributes related to mental objects. The alignment of these two aggregate function produce weighted ranking order fuzzy set for medical decision making for diagnosis. The paper highlights these issues as new challenges extending intelligence reasoning of VDS.","PeriodicalId":293436,"journal":{"name":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Fuzzy reasoning for medical diagnosis-based aggregation on different ontologies\",\"authors\":\"H. Fujita, I. Rudas, J. Fodor, M. Kurematsu, J. Hakura\",\"doi\":\"10.1109/SACI.2012.6249991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses reasoning application for decision making in medical diagnosis. This is to reason on medical concepts that are viewed on two type ontologies; namely physical and mental. We highlighted in this position paper issues on fuzzy reasoning by aggregating two types of ontologies that are used to formalize a patient state: mental ontology reflecting the patient mental behavior due to certain disorder and physical ontology reflecting the observed physical behavior exhibited through disorder. Similarity matching is used to find the similarity between fuzzy set reflected to mental fuzzy ontology, and physical fuzzy ontology. The alignment is projected on medical ontology to rank attributes for decision making. We apply aggregate function for ranking attributes related to physical object. In the same time, we apply harmonic power average aggregate function fuzzy for ranking attributes related to mental objects. The alignment of these two aggregate function produce weighted ranking order fuzzy set for medical decision making for diagnosis. The paper highlights these issues as new challenges extending intelligence reasoning of VDS.\",\"PeriodicalId\":293436,\"journal\":{\"name\":\"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2012.6249991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2012.6249991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

论述了推理在医学诊断决策中的应用。这是对两种类型本体论上的医学概念的推理;即身体和精神。在这篇立场文件中,我们通过汇总用于形式化患者状态的两种类型的本体来强调模糊推理问题:反映由于某种疾病而导致的患者心理行为的心理本体和反映通过疾病表现出的观察到的身体行为的物理本体。相似度匹配是用来寻找反映在心理模糊本体上的模糊集与物理模糊本体之间的相似度。将对齐映射到医学本体上,对属性进行排序,以便进行决策。我们应用聚合函数对与物理对象相关的属性进行排序。同时,采用谐波幂平均聚合函数模糊对心理对象相关属性进行排序。这两个集合函数的对齐产生加权排序模糊集,用于医疗决策的诊断。本文将这些问题作为扩展VDS智能推理的新挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy reasoning for medical diagnosis-based aggregation on different ontologies
The paper discusses reasoning application for decision making in medical diagnosis. This is to reason on medical concepts that are viewed on two type ontologies; namely physical and mental. We highlighted in this position paper issues on fuzzy reasoning by aggregating two types of ontologies that are used to formalize a patient state: mental ontology reflecting the patient mental behavior due to certain disorder and physical ontology reflecting the observed physical behavior exhibited through disorder. Similarity matching is used to find the similarity between fuzzy set reflected to mental fuzzy ontology, and physical fuzzy ontology. The alignment is projected on medical ontology to rank attributes for decision making. We apply aggregate function for ranking attributes related to physical object. In the same time, we apply harmonic power average aggregate function fuzzy for ranking attributes related to mental objects. The alignment of these two aggregate function produce weighted ranking order fuzzy set for medical decision making for diagnosis. The paper highlights these issues as new challenges extending intelligence reasoning of VDS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software architecture for semantically enhanced composition of geoservices in cadastral systems Fuzzy Rule Interpolation Developer Toolbox Library Long life oriented smart control of heating body A model of translation management systems for multilingual documents Using the Gram-Charlier expansion in power systems reliability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1