用有限元法并行模拟两相流问题

S. Aliabadi, Khalil Shujaee, T. Tezduyar
{"title":"用有限元法并行模拟两相流问题","authors":"S. Aliabadi, Khalil Shujaee, T. Tezduyar","doi":"10.1109/FMPC.1999.750591","DOIUrl":null,"url":null,"abstract":"Parallel computation of unsteady, two-phase flow problems are performed using stabilized finite element method. The finite element formulations are written for fix meshes and are based on the Navier-Stokes equations and an advection equation governing the motion of the interface function. The interface function, with two distinct values serve as an marker identifying each fluid This function is advected with fluid velocity through out the computational domain. To increase the accuracy of the method, an interface-sharpening/mass conservation algorithm is designed. The method has been implemented on the CRAY T3E and also IBM SP/6000 using the MPI libraries. We show the effectiveness of the method in simulating complex 3D problems, such as two-fluid interface in a centrifuge tube, operation stability of a partially-filled tanker truck driving over a bump and hydrodynamics stability of ships.","PeriodicalId":405655,"journal":{"name":"Proceedings. Frontiers '99. Seventh Symposium on the Frontiers of Massively Parallel Computation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallel simulation of two-phase flow problems using the finite element method\",\"authors\":\"S. Aliabadi, Khalil Shujaee, T. Tezduyar\",\"doi\":\"10.1109/FMPC.1999.750591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel computation of unsteady, two-phase flow problems are performed using stabilized finite element method. The finite element formulations are written for fix meshes and are based on the Navier-Stokes equations and an advection equation governing the motion of the interface function. The interface function, with two distinct values serve as an marker identifying each fluid This function is advected with fluid velocity through out the computational domain. To increase the accuracy of the method, an interface-sharpening/mass conservation algorithm is designed. The method has been implemented on the CRAY T3E and also IBM SP/6000 using the MPI libraries. We show the effectiveness of the method in simulating complex 3D problems, such as two-fluid interface in a centrifuge tube, operation stability of a partially-filled tanker truck driving over a bump and hydrodynamics stability of ships.\",\"PeriodicalId\":405655,\"journal\":{\"name\":\"Proceedings. Frontiers '99. Seventh Symposium on the Frontiers of Massively Parallel Computation\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Frontiers '99. Seventh Symposium on the Frontiers of Massively Parallel Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMPC.1999.750591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Frontiers '99. Seventh Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMPC.1999.750591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用稳定有限元法对非定常两相流问题进行了并行计算。有限元公式是为固定网格编写的,并基于Navier-Stokes方程和控制界面函数运动的平流方程。具有两个不同值的界面函数作为识别每种流体的标记,该函数在整个计算域内与流体速度平流。为了提高方法的精度,设计了一种接口锐化/质量守恒算法。该方法已在CRAY T3E和IBM SP/6000上使用MPI库实现。我们证明了该方法在模拟复杂的三维问题上的有效性,例如离心机管中的两流体界面,部分装满的油罐车行驶在颠簸上的运行稳定性以及船舶的流体动力学稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel simulation of two-phase flow problems using the finite element method
Parallel computation of unsteady, two-phase flow problems are performed using stabilized finite element method. The finite element formulations are written for fix meshes and are based on the Navier-Stokes equations and an advection equation governing the motion of the interface function. The interface function, with two distinct values serve as an marker identifying each fluid This function is advected with fluid velocity through out the computational domain. To increase the accuracy of the method, an interface-sharpening/mass conservation algorithm is designed. The method has been implemented on the CRAY T3E and also IBM SP/6000 using the MPI libraries. We show the effectiveness of the method in simulating complex 3D problems, such as two-fluid interface in a centrifuge tube, operation stability of a partially-filled tanker truck driving over a bump and hydrodynamics stability of ships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Token space minimization by simulated annealing Fast parallel selection on the linear array with reconfigurable pipelined bus system Packing/unpacking information generation for efficient generalized kr/spl rarr/r and r/spl rarr/kr array redistribution Latency tolerant algorithms for WAN based workstation clusters New algorithms for efficient mining of association rules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1