基于锚定正则化的车辆再识别渐进式学习

Mohamed Dhia Besbes, Hedi Tabia, Yousri Kessentini, Bassem Ben Hamed
{"title":"基于锚定正则化的车辆再识别渐进式学习","authors":"Mohamed Dhia Besbes, Hedi Tabia, Yousri Kessentini, Bassem Ben Hamed","doi":"10.1109/ICIP42928.2021.9506152","DOIUrl":null,"url":null,"abstract":"Vehicle re-identification (re-ID) aims to automatically find vehicle identity from a large number of vehicle images captured from multiple cameras. Most existing vehicle re-ID approaches rely on fully supervised learning methodologies, where large amounts of annotated training data are required, which is an expensive task. In this paper, we focus our interest on semi-supervised vehicle re-ID, where each identity has a single labeled and multiple unlabeled samples in the training. We propose a framework which gradually labels vehicle images taken from surveillance cameras. Our framework is based on a deep Convolutional Neural Network (CNN), which is progressively learned using a feature anchoring regularization process. The experiments conducted on various publicly available datasets demonstrate the efficiency of our framework in re-ID tasks. Our approach with only 20% labeled data shows interesting performance compared to the state-of-the-art supervised methods trained on fully labeled data.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive Learning With Anchoring Regularization For Vehicle Re-Identification\",\"authors\":\"Mohamed Dhia Besbes, Hedi Tabia, Yousri Kessentini, Bassem Ben Hamed\",\"doi\":\"10.1109/ICIP42928.2021.9506152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle re-identification (re-ID) aims to automatically find vehicle identity from a large number of vehicle images captured from multiple cameras. Most existing vehicle re-ID approaches rely on fully supervised learning methodologies, where large amounts of annotated training data are required, which is an expensive task. In this paper, we focus our interest on semi-supervised vehicle re-ID, where each identity has a single labeled and multiple unlabeled samples in the training. We propose a framework which gradually labels vehicle images taken from surveillance cameras. Our framework is based on a deep Convolutional Neural Network (CNN), which is progressively learned using a feature anchoring regularization process. The experiments conducted on various publicly available datasets demonstrate the efficiency of our framework in re-ID tasks. Our approach with only 20% labeled data shows interesting performance compared to the state-of-the-art supervised methods trained on fully labeled data.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

车辆再识别(re-ID)旨在从多个摄像头采集的大量车辆图像中自动识别车辆身份。大多数现有的车辆重新识别方法依赖于完全监督的学习方法,其中需要大量带注释的训练数据,这是一项昂贵的任务。在本文中,我们关注的是半监督车辆重新识别,其中每个身份在训练中有单个标记和多个未标记的样本。提出了一种对监控摄像头拍摄的车辆图像进行逐步标记的框架。我们的框架基于深度卷积神经网络(CNN),该网络使用特征锚定正则化过程逐步学习。在各种公开可用的数据集上进行的实验证明了我们的框架在re-ID任务中的效率。与在完全标记数据上训练的最先进的监督方法相比,我们仅使用20%标记数据的方法显示出有趣的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progressive Learning With Anchoring Regularization For Vehicle Re-Identification
Vehicle re-identification (re-ID) aims to automatically find vehicle identity from a large number of vehicle images captured from multiple cameras. Most existing vehicle re-ID approaches rely on fully supervised learning methodologies, where large amounts of annotated training data are required, which is an expensive task. In this paper, we focus our interest on semi-supervised vehicle re-ID, where each identity has a single labeled and multiple unlabeled samples in the training. We propose a framework which gradually labels vehicle images taken from surveillance cameras. Our framework is based on a deep Convolutional Neural Network (CNN), which is progressively learned using a feature anchoring regularization process. The experiments conducted on various publicly available datasets demonstrate the efficiency of our framework in re-ID tasks. Our approach with only 20% labeled data shows interesting performance compared to the state-of-the-art supervised methods trained on fully labeled data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1