基于多视图视觉显著性的MRI分类在阿尔茨海默病诊断中的应用

O. B. Ahmed, F. Lecellier, M. Paccalin, C. Fernandez-Maloigne
{"title":"基于多视图视觉显著性的MRI分类在阿尔茨海默病诊断中的应用","authors":"O. B. Ahmed, F. Lecellier, M. Paccalin, C. Fernandez-Maloigne","doi":"10.1109/IPTA.2017.8310118","DOIUrl":null,"url":null,"abstract":"Visual inspection is the first step performed by clinicians during evaluation of medical images in image-based diagnosis. This behavior can be automated using computational saliency models. In this paper, we investigate the potential role of visual saliency for computer-aided diagnosis of Alzheimer's disease (AD). We propose a multi-view saliency-based framework to detect abnormalities from structural Magnitude Resonance Imaging (MRI) and classify subjects in a Multiple Kernel Learning (MKL) framework. The obtained saliency maps are able to detect relevant brain areas for early AD diagnosis. The effectiveness of the proposed approach was evaluated on structural MRI of 509 subjects from the ADNI dataset. We achieved accuracy of 88.98% (specificity of 94.4% and a sensitivity of 83.46%) and 81.31% (specificity of 84.22% and a sensitivity of 74.21%) classification and for respectively AD versus Normal Control(NC) and NC versus Mild Cognitive Impairment (MCI). For the most challenging classification task (AD versus MCI), we reached an accuracy of 79.8%, a specificity of 79.93% and a sensitivity of 64.02%.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-view visual saliency-based MRI classification for alzheimer's disease diagnosis\",\"authors\":\"O. B. Ahmed, F. Lecellier, M. Paccalin, C. Fernandez-Maloigne\",\"doi\":\"10.1109/IPTA.2017.8310118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual inspection is the first step performed by clinicians during evaluation of medical images in image-based diagnosis. This behavior can be automated using computational saliency models. In this paper, we investigate the potential role of visual saliency for computer-aided diagnosis of Alzheimer's disease (AD). We propose a multi-view saliency-based framework to detect abnormalities from structural Magnitude Resonance Imaging (MRI) and classify subjects in a Multiple Kernel Learning (MKL) framework. The obtained saliency maps are able to detect relevant brain areas for early AD diagnosis. The effectiveness of the proposed approach was evaluated on structural MRI of 509 subjects from the ADNI dataset. We achieved accuracy of 88.98% (specificity of 94.4% and a sensitivity of 83.46%) and 81.31% (specificity of 84.22% and a sensitivity of 74.21%) classification and for respectively AD versus Normal Control(NC) and NC versus Mild Cognitive Impairment (MCI). For the most challenging classification task (AD versus MCI), we reached an accuracy of 79.8%, a specificity of 79.93% and a sensitivity of 64.02%.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

视觉检查是临床医生在基于图像的诊断中对医学图像进行评估的第一步。这种行为可以使用计算显著性模型自动实现。在本文中,我们研究了视觉显著性在阿尔茨海默病(AD)计算机辅助诊断中的潜在作用。我们提出了一个基于多视图显著性的框架来检测结构核磁共振成像(MRI)的异常,并在多核学习(MKL)框架中对受试者进行分类。获得的显著性图能够检测出相关的大脑区域,用于早期AD诊断。在来自ADNI数据集的509名受试者的结构MRI上评估了该方法的有效性。我们分别对AD与正常对照(NC)和NC与轻度认知障碍(MCI)进行分类,准确率为88.98%(特异性为94.4%,敏感性为83.46%)和81.31%(特异性为84.22%,敏感性为74.21%)。对于最具挑战性的分类任务(AD与MCI),我们达到了79.8%的准确率,79.93%的特异性和64.02%的灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-view visual saliency-based MRI classification for alzheimer's disease diagnosis
Visual inspection is the first step performed by clinicians during evaluation of medical images in image-based diagnosis. This behavior can be automated using computational saliency models. In this paper, we investigate the potential role of visual saliency for computer-aided diagnosis of Alzheimer's disease (AD). We propose a multi-view saliency-based framework to detect abnormalities from structural Magnitude Resonance Imaging (MRI) and classify subjects in a Multiple Kernel Learning (MKL) framework. The obtained saliency maps are able to detect relevant brain areas for early AD diagnosis. The effectiveness of the proposed approach was evaluated on structural MRI of 509 subjects from the ADNI dataset. We achieved accuracy of 88.98% (specificity of 94.4% and a sensitivity of 83.46%) and 81.31% (specificity of 84.22% and a sensitivity of 74.21%) classification and for respectively AD versus Normal Control(NC) and NC versus Mild Cognitive Impairment (MCI). For the most challenging classification task (AD versus MCI), we reached an accuracy of 79.8%, a specificity of 79.93% and a sensitivity of 64.02%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1