{"title":"NC理论的经验挑战(摘要)","authors":"Ananth Hari, U. Vishkin","doi":"10.1145/3597635.3598020","DOIUrl":null,"url":null,"abstract":"Horn-satisfiability or Horn-SAT is the problem of deciding whether a satisfying assignment exists for a Horn formula, a conjunction of clauses each with at most one positive literal (also known as Horn clauses). It is a well-known P-complete problem, which implies that unless P = NC, it is a hard problem to parallelize. In this paper, we empirically show that, under a known simple random model for generating the Horn formula, the ratio of hard-to-parallelize instances (closer to the worst-case behavior) is infinitesimally small. We show that the depth of a parallel algorithm for Horn-SAT is polylogarithmic on average, for almost all instances, while keeping the work linear. This challenges theoreticians and programmers to look beyond worst-case analysis and come up with practical algorithms coupled with respective performance guarantees.","PeriodicalId":185981,"journal":{"name":"Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical Challenge for NC Theory (Abstract)\",\"authors\":\"Ananth Hari, U. Vishkin\",\"doi\":\"10.1145/3597635.3598020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Horn-satisfiability or Horn-SAT is the problem of deciding whether a satisfying assignment exists for a Horn formula, a conjunction of clauses each with at most one positive literal (also known as Horn clauses). It is a well-known P-complete problem, which implies that unless P = NC, it is a hard problem to parallelize. In this paper, we empirically show that, under a known simple random model for generating the Horn formula, the ratio of hard-to-parallelize instances (closer to the worst-case behavior) is infinitesimally small. We show that the depth of a parallel algorithm for Horn-SAT is polylogarithmic on average, for almost all instances, while keeping the work linear. This challenges theoreticians and programmers to look beyond worst-case analysis and come up with practical algorithms coupled with respective performance guarantees.\",\"PeriodicalId\":185981,\"journal\":{\"name\":\"Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3597635.3598020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597635.3598020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Horn-satisfiability or Horn-SAT is the problem of deciding whether a satisfying assignment exists for a Horn formula, a conjunction of clauses each with at most one positive literal (also known as Horn clauses). It is a well-known P-complete problem, which implies that unless P = NC, it is a hard problem to parallelize. In this paper, we empirically show that, under a known simple random model for generating the Horn formula, the ratio of hard-to-parallelize instances (closer to the worst-case behavior) is infinitesimally small. We show that the depth of a parallel algorithm for Horn-SAT is polylogarithmic on average, for almost all instances, while keeping the work linear. This challenges theoreticians and programmers to look beyond worst-case analysis and come up with practical algorithms coupled with respective performance guarantees.