{"title":"基于cpld的双电源32位ALU,适用于180nm以下的CMOS技术","authors":"B. Chatterjee, M. Sachdev, R. Krishnamurthy","doi":"10.1145/1013235.1013298","DOIUrl":null,"url":null,"abstract":"In this paper we present the design of a high performance 32-bit ALU for low power applications. We use dual power supply scheme and CPL logic for non-critical units of the ALU. In addition, latches with only n-MOS clocked transistors are used to interface logic operating at different power supplies and achieve static power free operation. Our simulation results indicate that, for the 180 nm-65 nm CMOS technologies it is possible to reduce the ALU total energy by 18%-24%, with minimal delay degradation. In addition, there is up to 22%-32% reduction in leakage power in the standby mode.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A CPL-based dual supply 32-bit ALU for sub 180 nm CMOS technologies\",\"authors\":\"B. Chatterjee, M. Sachdev, R. Krishnamurthy\",\"doi\":\"10.1145/1013235.1013298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the design of a high performance 32-bit ALU for low power applications. We use dual power supply scheme and CPL logic for non-critical units of the ALU. In addition, latches with only n-MOS clocked transistors are used to interface logic operating at different power supplies and achieve static power free operation. Our simulation results indicate that, for the 180 nm-65 nm CMOS technologies it is possible to reduce the ALU total energy by 18%-24%, with minimal delay degradation. In addition, there is up to 22%-32% reduction in leakage power in the standby mode.\",\"PeriodicalId\":120002,\"journal\":{\"name\":\"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1013235.1013298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CPL-based dual supply 32-bit ALU for sub 180 nm CMOS technologies
In this paper we present the design of a high performance 32-bit ALU for low power applications. We use dual power supply scheme and CPL logic for non-critical units of the ALU. In addition, latches with only n-MOS clocked transistors are used to interface logic operating at different power supplies and achieve static power free operation. Our simulation results indicate that, for the 180 nm-65 nm CMOS technologies it is possible to reduce the ALU total energy by 18%-24%, with minimal delay degradation. In addition, there is up to 22%-32% reduction in leakage power in the standby mode.