{"title":"V-BLAST算法的性能分析:一种分析方法","authors":"S. Loyka, F. Gagnon","doi":"10.1109/IZSBC.2002.991745","DOIUrl":null,"url":null,"abstract":"An analytical approach to the performance analysis of the V-BLAST (vertical Bell Labs layered space-time) algorithm is presented. The approach is based on the analytical model of the Gramm-Schmidt process. Closed-form analytical expressions of the vector signal at the i-th processing step and its power are presented. A rigorous proof is given that the diversity order at the i-th step (without optimal ordering) is (n-m+i), where n and m are the number of receiver and transmitter antennas respectively. It is shown that the optimal ordering is based on the least correlation criterion and that the after-processing signal power is determined by the channel correlation matrices in a fashion similar to the channel capacity.","PeriodicalId":336991,"journal":{"name":"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Performance analysis of the V-BLAST algorithm: an analytical approach\",\"authors\":\"S. Loyka, F. Gagnon\",\"doi\":\"10.1109/IZSBC.2002.991745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytical approach to the performance analysis of the V-BLAST (vertical Bell Labs layered space-time) algorithm is presented. The approach is based on the analytical model of the Gramm-Schmidt process. Closed-form analytical expressions of the vector signal at the i-th processing step and its power are presented. A rigorous proof is given that the diversity order at the i-th step (without optimal ordering) is (n-m+i), where n and m are the number of receiver and transmitter antennas respectively. It is shown that the optimal ordering is based on the least correlation criterion and that the after-processing signal power is determined by the channel correlation matrices in a fashion similar to the channel capacity.\",\"PeriodicalId\":336991,\"journal\":{\"name\":\"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IZSBC.2002.991745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IZSBC.2002.991745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance analysis of the V-BLAST algorithm: an analytical approach
An analytical approach to the performance analysis of the V-BLAST (vertical Bell Labs layered space-time) algorithm is presented. The approach is based on the analytical model of the Gramm-Schmidt process. Closed-form analytical expressions of the vector signal at the i-th processing step and its power are presented. A rigorous proof is given that the diversity order at the i-th step (without optimal ordering) is (n-m+i), where n and m are the number of receiver and transmitter antennas respectively. It is shown that the optimal ordering is based on the least correlation criterion and that the after-processing signal power is determined by the channel correlation matrices in a fashion similar to the channel capacity.