基于omnet++的车载电力线通信(VPLC)中多通道介质访问控制协议的演示

Zhengguo Sheng, Morgan Roff, R. P. Antonioli, Victor C. M. Leung
{"title":"基于omnet++的车载电力线通信(VPLC)中多通道介质访问控制协议的演示","authors":"Zhengguo Sheng, Morgan Roff, R. P. Antonioli, Victor C. M. Leung","doi":"10.1109/WIVEC.2014.6953220","DOIUrl":null,"url":null,"abstract":"In-vehicle communication is becoming more important as the need to ensure reliable and efficient communications with the increasing number of x-by-wire applications. In order to well maintain in-vehicle communications, it is necessary to evolve protocols for managing communications and, in particular, for granting bus access for real-time applications. In this paper, we describe a demonstration of the multi-channel random access protocol that we have developed for VPLC using OMNeT++. The proposed solution uses a combination of time and frequency multiplexing and consists of two key features: (i) multiple access channels to prioritize transmissions and (ii) a distributed collision resolution algorithm that allows each node to compete for the use of its selected channel. The live demonstration illustrates the contention resolution procedure of in-vehicle communications with different service classes, shows simulation results to validate the advantages of the proposed protocol and provides useful guidelines for developing a robust contention-based protocol for vehicular power line communication systems.","PeriodicalId":410528,"journal":{"name":"2014 IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC 2014)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Demonstration of multi-channel medium access control protocol in vehicular power line communication (VPLC) using OMNeT++\",\"authors\":\"Zhengguo Sheng, Morgan Roff, R. P. Antonioli, Victor C. M. Leung\",\"doi\":\"10.1109/WIVEC.2014.6953220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-vehicle communication is becoming more important as the need to ensure reliable and efficient communications with the increasing number of x-by-wire applications. In order to well maintain in-vehicle communications, it is necessary to evolve protocols for managing communications and, in particular, for granting bus access for real-time applications. In this paper, we describe a demonstration of the multi-channel random access protocol that we have developed for VPLC using OMNeT++. The proposed solution uses a combination of time and frequency multiplexing and consists of two key features: (i) multiple access channels to prioritize transmissions and (ii) a distributed collision resolution algorithm that allows each node to compete for the use of its selected channel. The live demonstration illustrates the contention resolution procedure of in-vehicle communications with different service classes, shows simulation results to validate the advantages of the proposed protocol and provides useful guidelines for developing a robust contention-based protocol for vehicular power line communication systems.\",\"PeriodicalId\":410528,\"journal\":{\"name\":\"2014 IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC 2014)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIVEC.2014.6953220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIVEC.2014.6953220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着线传x线传应用的不断增加,为了确保可靠和高效的通信,车载通信变得越来越重要。为了很好地维护车载通信,有必要发展管理通信的协议,特别是为实时应用程序授予总线访问权限的协议。本文描述了我们利用omnet++开发的VPLC多通道随机接入协议的演示。提出的解决方案使用时间和频率复用的组合,并由两个关键特征组成:(i)多个访问通道优先传输和(ii)分布式冲突解决算法,允许每个节点竞争使用其选择的通道。现场演示演示了不同服务类别的车载通信争用解决过程,并通过仿真结果验证了所提出协议的优势,为开发基于争用的车载电力线通信系统鲁棒协议提供了有用的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demonstration of multi-channel medium access control protocol in vehicular power line communication (VPLC) using OMNeT++
In-vehicle communication is becoming more important as the need to ensure reliable and efficient communications with the increasing number of x-by-wire applications. In order to well maintain in-vehicle communications, it is necessary to evolve protocols for managing communications and, in particular, for granting bus access for real-time applications. In this paper, we describe a demonstration of the multi-channel random access protocol that we have developed for VPLC using OMNeT++. The proposed solution uses a combination of time and frequency multiplexing and consists of two key features: (i) multiple access channels to prioritize transmissions and (ii) a distributed collision resolution algorithm that allows each node to compete for the use of its selected channel. The live demonstration illustrates the contention resolution procedure of in-vehicle communications with different service classes, shows simulation results to validate the advantages of the proposed protocol and provides useful guidelines for developing a robust contention-based protocol for vehicular power line communication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards zero on-site testing: Advanced traffic management & control systems simulation framework including communication KPIs and response to failure events A V2X communication system and its performance evaluation test bed Signal-to-noise ratio modeling for vehicle-to-infrastructure communications Cooperative localization based on topology matching Finite-state Markov channel modeling for vehicle-to-infrastructure communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1