用粒子滤波监督深度卷积神经网络在密集拥挤场景中跟踪数百人

G. Franchi, Emanuel Aldea, Séverine Dubuisson, I. Bloch
{"title":"用粒子滤波监督深度卷积神经网络在密集拥挤场景中跟踪数百人","authors":"G. Franchi, Emanuel Aldea, Séverine Dubuisson, I. Bloch","doi":"10.1109/ICIP40778.2020.9190953","DOIUrl":null,"url":null,"abstract":"Tracking an entire high-density crowd composed of more than five hundred individuals is a difficult task that has not yet been accomplished. In this article, we propose to track pedestrians using a model composed of a Particle Filter (PF) and three Deep Convolutional Neural Networks (DCNN). The first network is a detector that learns to localize the persons. The second one is a pretrained network that estimates the optical flow, and the last one corrects the flow. Our contribution resides in the way we train this last network by PF supervision, and in Markov Random Field linking the different tracks.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tracking Hundreds of People in Densely Crowded Scenes With Particle Filtering Supervising Deep Convolutional Neural Networks\",\"authors\":\"G. Franchi, Emanuel Aldea, Séverine Dubuisson, I. Bloch\",\"doi\":\"10.1109/ICIP40778.2020.9190953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking an entire high-density crowd composed of more than five hundred individuals is a difficult task that has not yet been accomplished. In this article, we propose to track pedestrians using a model composed of a Particle Filter (PF) and three Deep Convolutional Neural Networks (DCNN). The first network is a detector that learns to localize the persons. The second one is a pretrained network that estimates the optical flow, and the last one corrects the flow. Our contribution resides in the way we train this last network by PF supervision, and in Markov Random Field linking the different tracks.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9190953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

跟踪一个由500多人组成的高密度人群是一项尚未完成的艰巨任务。在本文中,我们建议使用由粒子滤波器(PF)和三个深度卷积神经网络(DCNN)组成的模型来跟踪行人。第一个网络是一个检测器,它学习定位人。第二种是预训练的网络,用来估计光流,最后一种是校正光流。我们的贡献在于我们通过PF监督训练最后一个网络的方式,以及连接不同轨道的马尔可夫随机场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking Hundreds of People in Densely Crowded Scenes With Particle Filtering Supervising Deep Convolutional Neural Networks
Tracking an entire high-density crowd composed of more than five hundred individuals is a difficult task that has not yet been accomplished. In this article, we propose to track pedestrians using a model composed of a Particle Filter (PF) and three Deep Convolutional Neural Networks (DCNN). The first network is a detector that learns to localize the persons. The second one is a pretrained network that estimates the optical flow, and the last one corrects the flow. Our contribution resides in the way we train this last network by PF supervision, and in Markov Random Field linking the different tracks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1