{"title":"一种基于可变长度分割和隐马尔可夫模型的在线签名验证算法","authors":"M. Shafiei, H. Rabiee","doi":"10.1109/ICDAR.2003.1227706","DOIUrl":null,"url":null,"abstract":"In this paper, a new on-line handwritten signature verification system using Hidden Markov Model (HMM) is presented. The proposed system segments each signature based on its perceptually important points and then computes for each segment a number of features that are scale and displacement invariant. The resulted sequence is then used for training an HMM to achieve signature verification. Our database includes 622 genuine signatures and 1010 forgery signatures that were collected from a population of 69 human subjects. Our verification system has achieved a false acceptance rate (FAR) of 4% and a false rejection rate (FRR) of 12%.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"A new online signature verification algorithm using variable length segmentation and hidden Markov models\",\"authors\":\"M. Shafiei, H. Rabiee\",\"doi\":\"10.1109/ICDAR.2003.1227706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new on-line handwritten signature verification system using Hidden Markov Model (HMM) is presented. The proposed system segments each signature based on its perceptually important points and then computes for each segment a number of features that are scale and displacement invariant. The resulted sequence is then used for training an HMM to achieve signature verification. Our database includes 622 genuine signatures and 1010 forgery signatures that were collected from a population of 69 human subjects. Our verification system has achieved a false acceptance rate (FAR) of 4% and a false rejection rate (FRR) of 12%.\",\"PeriodicalId\":249193,\"journal\":{\"name\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2003.1227706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new online signature verification algorithm using variable length segmentation and hidden Markov models
In this paper, a new on-line handwritten signature verification system using Hidden Markov Model (HMM) is presented. The proposed system segments each signature based on its perceptually important points and then computes for each segment a number of features that are scale and displacement invariant. The resulted sequence is then used for training an HMM to achieve signature verification. Our database includes 622 genuine signatures and 1010 forgery signatures that were collected from a population of 69 human subjects. Our verification system has achieved a false acceptance rate (FAR) of 4% and a false rejection rate (FRR) of 12%.