{"title":"基于并行压缩/解压缩的多波束掩码编写器数据路径架构","authors":"N. Chaudhary, S. Savari","doi":"10.1117/12.2279737","DOIUrl":null,"url":null,"abstract":"Multibeam electron beam systems will be used in the future for mask writing and for complimentary lithography. The major challenges of the multibeam systems are in meeting throughput requirements and in handling the large data volumes associated with writing grayscale data on the wafer. In terms of future communications and computational requirements Amdahl’s Law suggests that a simple increase of computation power and parallelism may not be a sustainable solution. We propose a parallel data compression algorithm to exploit the sparsity of mask data and a grayscale video-like representation of data. To improve the communication and computational efficiency of these systems at the write time we propose an alternate datapath architecture partly motivated by multibeam direct write lithography and partly motivated by the circuit testing literature, where parallel decompression reduces clock cycles. We explain a deflection plate architecture inspired by NuFlare Technology’s multibeam mask writing system and how our datapath architecture can be easily added to it to improve performance.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parallel compression/decompression-based datapath architecture for multibeam mask writers\",\"authors\":\"N. Chaudhary, S. Savari\",\"doi\":\"10.1117/12.2279737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multibeam electron beam systems will be used in the future for mask writing and for complimentary lithography. The major challenges of the multibeam systems are in meeting throughput requirements and in handling the large data volumes associated with writing grayscale data on the wafer. In terms of future communications and computational requirements Amdahl’s Law suggests that a simple increase of computation power and parallelism may not be a sustainable solution. We propose a parallel data compression algorithm to exploit the sparsity of mask data and a grayscale video-like representation of data. To improve the communication and computational efficiency of these systems at the write time we propose an alternate datapath architecture partly motivated by multibeam direct write lithography and partly motivated by the circuit testing literature, where parallel decompression reduces clock cycles. We explain a deflection plate architecture inspired by NuFlare Technology’s multibeam mask writing system and how our datapath architecture can be easily added to it to improve performance.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2279737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2279737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel compression/decompression-based datapath architecture for multibeam mask writers
Multibeam electron beam systems will be used in the future for mask writing and for complimentary lithography. The major challenges of the multibeam systems are in meeting throughput requirements and in handling the large data volumes associated with writing grayscale data on the wafer. In terms of future communications and computational requirements Amdahl’s Law suggests that a simple increase of computation power and parallelism may not be a sustainable solution. We propose a parallel data compression algorithm to exploit the sparsity of mask data and a grayscale video-like representation of data. To improve the communication and computational efficiency of these systems at the write time we propose an alternate datapath architecture partly motivated by multibeam direct write lithography and partly motivated by the circuit testing literature, where parallel decompression reduces clock cycles. We explain a deflection plate architecture inspired by NuFlare Technology’s multibeam mask writing system and how our datapath architecture can be easily added to it to improve performance.