{"title":"探究:一种理解抽象空间的技术","authors":"Ashlen A. Plasek","doi":"10.61366/2576-2176.1126","DOIUrl":null,"url":null,"abstract":"Machine learning models, while very powerful, have their operation obfuscated behind millions of parameters. This obfuscation can make deriving a human meaningful process from a machine learning model very difficult. However, while the intermediate states of a machine learning model are similarly obfuscated, using probing, we can start to explore looking at possible structure in those intermediate states. Large language models are a prime example of this obfuscation, and probing can begin to allow novel experimentation to be performed.","PeriodicalId":113813,"journal":{"name":"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing as a Technique to Understand Abstract Spaces\",\"authors\":\"Ashlen A. Plasek\",\"doi\":\"10.61366/2576-2176.1126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning models, while very powerful, have their operation obfuscated behind millions of parameters. This obfuscation can make deriving a human meaningful process from a machine learning model very difficult. However, while the intermediate states of a machine learning model are similarly obfuscated, using probing, we can start to explore looking at possible structure in those intermediate states. Large language models are a prime example of this obfuscation, and probing can begin to allow novel experimentation to be performed.\",\"PeriodicalId\":113813,\"journal\":{\"name\":\"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61366/2576-2176.1126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61366/2576-2176.1126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probing as a Technique to Understand Abstract Spaces
Machine learning models, while very powerful, have their operation obfuscated behind millions of parameters. This obfuscation can make deriving a human meaningful process from a machine learning model very difficult. However, while the intermediate states of a machine learning model are similarly obfuscated, using probing, we can start to explore looking at possible structure in those intermediate states. Large language models are a prime example of this obfuscation, and probing can begin to allow novel experimentation to be performed.