双网联合信道估计与无授权海量接入数据恢复

Yanna Bai, Wei Chen, Yuan Ma, Ning Wang, Bo Ai
{"title":"双网联合信道估计与无授权海量接入数据恢复","authors":"Yanna Bai, Wei Chen, Yuan Ma, Ning Wang, Bo Ai","doi":"10.1109/GLOBECOM46510.2021.9685696","DOIUrl":null,"url":null,"abstract":"In massive machine-type communications (mMTC), the conflict between millions of potential access devices and limited channel freedom leads to a sharp decrease in spectral efficiency. The sparse nature of mMTC provides a solution by using compressive sensing (CS) to perform multiuser detection (MUD) but suffers conflict between the high computation complexity and low latency requirements. In this paper, we propose a novel Dual-network for joint channel estimation and data recovery. The proposed Dual-Net utilizes the sparse consistency between the channel vector and data matrix of all users. Experimental results show that the proposed Dual-Net outperforms existing CS algorithms and general neural networks in computation complexity and accuracy, which means reduced access delay and more supported devices.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dual-Net for Joint Channel Estimation and Data Recovery in Grant-free Massive Access\",\"authors\":\"Yanna Bai, Wei Chen, Yuan Ma, Ning Wang, Bo Ai\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In massive machine-type communications (mMTC), the conflict between millions of potential access devices and limited channel freedom leads to a sharp decrease in spectral efficiency. The sparse nature of mMTC provides a solution by using compressive sensing (CS) to perform multiuser detection (MUD) but suffers conflict between the high computation complexity and low latency requirements. In this paper, we propose a novel Dual-network for joint channel estimation and data recovery. The proposed Dual-Net utilizes the sparse consistency between the channel vector and data matrix of all users. Experimental results show that the proposed Dual-Net outperforms existing CS algorithms and general neural networks in computation complexity and accuracy, which means reduced access delay and more supported devices.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在大规模机器通信(mMTC)中,数以百万计的潜在接入设备和有限的信道自由之间的冲突导致频谱效率急剧下降。mMTC的稀疏特性提供了一种利用压缩感知(CS)执行多用户检测(MUD)的解决方案,但在高计算复杂度和低延迟需求之间存在冲突。本文提出了一种用于联合信道估计和数据恢复的新型双网络。所提出的双网利用了所有用户的信道向量和数据矩阵之间的稀疏一致性。实验结果表明,所提出的双网在计算复杂度和精度上都优于现有的CS算法和一般神经网络,减少了访问延迟,支持的设备更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual-Net for Joint Channel Estimation and Data Recovery in Grant-free Massive Access
In massive machine-type communications (mMTC), the conflict between millions of potential access devices and limited channel freedom leads to a sharp decrease in spectral efficiency. The sparse nature of mMTC provides a solution by using compressive sensing (CS) to perform multiuser detection (MUD) but suffers conflict between the high computation complexity and low latency requirements. In this paper, we propose a novel Dual-network for joint channel estimation and data recovery. The proposed Dual-Net utilizes the sparse consistency between the channel vector and data matrix of all users. Experimental results show that the proposed Dual-Net outperforms existing CS algorithms and general neural networks in computation complexity and accuracy, which means reduced access delay and more supported devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Energy Trading Scheme for Dynamic Charging of Electric Vehicles Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes A Fast and Scalable Resource Allocation Scheme for End-to-End Network Slices Modelling of Multi-Tier Handover in LiFi Networks Enabling Efficient Scheduling Policy in Intelligent Reflecting Surface Aided Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1