数据增强辅助卷积神经网络在数字乳房x线摄影异常检测中的应用

O. N. Oyelade, Ahmed Aminu Sambo
{"title":"数据增强辅助卷积神经网络在数字乳房x线摄影异常检测中的应用","authors":"O. N. Oyelade, Ahmed Aminu Sambo","doi":"10.56471/slujst.v4i.270","DOIUrl":null,"url":null,"abstract":"Background: The use of data augmentation techniques to addressing the challenge of network overfitting and classification error is important in deep learning. Insufficient sample data for training have the tendency to bias the trained model so that it fails to generalize well. Several studies have proposed different augmentation techniques to solve this problem. But there are some peculiarities identified with the nature of datasets when applying augmentation methods. The subtle nature of some abnormalities in digital mammography often makes it difficult to transform such datasets into different form, while preserving the structure of the abnormality. Aim: To address this, this study aims to apply a combination of carefully selected data augmentation operations on digital mammography.","PeriodicalId":299818,"journal":{"name":"SLU Journal of Science and Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Augmentation-aided Convolutional Neural Network for Detection of Abnormalities in Digital Mammography\",\"authors\":\"O. N. Oyelade, Ahmed Aminu Sambo\",\"doi\":\"10.56471/slujst.v4i.270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The use of data augmentation techniques to addressing the challenge of network overfitting and classification error is important in deep learning. Insufficient sample data for training have the tendency to bias the trained model so that it fails to generalize well. Several studies have proposed different augmentation techniques to solve this problem. But there are some peculiarities identified with the nature of datasets when applying augmentation methods. The subtle nature of some abnormalities in digital mammography often makes it difficult to transform such datasets into different form, while preserving the structure of the abnormality. Aim: To address this, this study aims to apply a combination of carefully selected data augmentation operations on digital mammography.\",\"PeriodicalId\":299818,\"journal\":{\"name\":\"SLU Journal of Science and Technology\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLU Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56471/slujst.v4i.270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLU Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56471/slujst.v4i.270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:使用数据增强技术来解决网络过拟合和分类错误的挑战在深度学习中很重要。用于训练的样本数据不足,容易使训练好的模型产生偏差,使其不能很好地泛化。一些研究提出了不同的增强技术来解决这个问题。但是在应用增强方法时,数据集的性质有一些特殊性。数字乳房x线摄影中一些异常的微妙性质通常使得很难将这些数据集转换成不同的形式,同时保留异常的结构。目的:为了解决这一问题,本研究旨在将精心选择的数据增强操作组合应用于数字乳房x线摄影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Augmentation-aided Convolutional Neural Network for Detection of Abnormalities in Digital Mammography
Background: The use of data augmentation techniques to addressing the challenge of network overfitting and classification error is important in deep learning. Insufficient sample data for training have the tendency to bias the trained model so that it fails to generalize well. Several studies have proposed different augmentation techniques to solve this problem. But there are some peculiarities identified with the nature of datasets when applying augmentation methods. The subtle nature of some abnormalities in digital mammography often makes it difficult to transform such datasets into different form, while preserving the structure of the abnormality. Aim: To address this, this study aims to apply a combination of carefully selected data augmentation operations on digital mammography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling of Post-COVID-19 Food Production Index in Nigeria using Box-Jenkins Methodology Sum-Rate Systematic Intercell Interference Coordination Techniques for5GHeterogeneous Networks Towards the Choice of Better Social Media Platform for Knowledge Delivery: Exploratory Study in University of Ilorin Schemes for Extending the Network Lifetime of Wireless Rechargeable Sensor Networks Design and Analysis of 1x4 and 1x8 Circular Patch Microstrip Antenna Array for IWSN Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1