{"title":"单资产美式期权敏感性估计的路径导数方法","authors":"Nan Chen, Yanchu Liu","doi":"10.1109/WSC.2010.5678967","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate efficient Monte Carlo estimators to American option sensitivities on single asset. Using two features of the exercising boundary of the optimal stopping problem, the “continuous-fit” and “smooth-pasting” conditions, we derive unbiased pathwise estimators for first and second-order derivatives. Our method can be easily embedded into some popular algorithms for pricing one-dimensional American options. Numerical examples on vanilla puts illustrate accuracy and efficiency of the method.","PeriodicalId":272260,"journal":{"name":"Proceedings of the 2010 Winter Simulation Conference","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathwise derivative methods on single-asset American option sensitivity estimation\",\"authors\":\"Nan Chen, Yanchu Liu\",\"doi\":\"10.1109/WSC.2010.5678967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate efficient Monte Carlo estimators to American option sensitivities on single asset. Using two features of the exercising boundary of the optimal stopping problem, the “continuous-fit” and “smooth-pasting” conditions, we derive unbiased pathwise estimators for first and second-order derivatives. Our method can be easily embedded into some popular algorithms for pricing one-dimensional American options. Numerical examples on vanilla puts illustrate accuracy and efficiency of the method.\",\"PeriodicalId\":272260,\"journal\":{\"name\":\"Proceedings of the 2010 Winter Simulation Conference\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2010 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2010.5678967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2010.5678967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pathwise derivative methods on single-asset American option sensitivity estimation
In this paper, we investigate efficient Monte Carlo estimators to American option sensitivities on single asset. Using two features of the exercising boundary of the optimal stopping problem, the “continuous-fit” and “smooth-pasting” conditions, we derive unbiased pathwise estimators for first and second-order derivatives. Our method can be easily embedded into some popular algorithms for pricing one-dimensional American options. Numerical examples on vanilla puts illustrate accuracy and efficiency of the method.