耦合MIMO系统的速率最大化:设计单端口匹配网络的通用算法

Yahia Hassan, A. Wittneben
{"title":"耦合MIMO系统的速率最大化:设计单端口匹配网络的通用算法","authors":"Yahia Hassan, A. Wittneben","doi":"10.1109/WCNC.2014.6952355","DOIUrl":null,"url":null,"abstract":"Compact arrays are known to be associated with antenna coupling and noise correlation. The noise can be either antenna noise, LNA noise or downstream noise. Due to these effects, it was shown that the matching network affects the performance of MIMO systems with coupled receiver antennas. Since the optimal multiport matching network is of very high complexity as well as very narrow operation bandwidth, development of single-port (SP) matching networks that boost the performance became inevitable. In this paper we develop a gradient-search algorithm to design the matching network for achievable rate maximization of multi user MIMO systems. For any combination of noise sources, we rigorously derive the exact gradient of the achievable rate with respect to the components of the matching network. We assume either full knowledge of the spatial channel or knowing its statistical properties. In the later case we optimize the matching network to maximize the Jensen's bound. Substantial performance enhancement is shown when our algorithms are used. Significant reduction in the array area is gained in comparison to the often used λ/2 antenna spacing without taking coupling into account. This can be vital for future wireless systems adopting massive MIMO arrays. Via eigenvalues distribution simulations at different SNR regimes, we show an intuitive link to the communication theory.","PeriodicalId":220393,"journal":{"name":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rate maximization in coupled MIMO systems: A generic algorithm for designing single-port matching networks\",\"authors\":\"Yahia Hassan, A. Wittneben\",\"doi\":\"10.1109/WCNC.2014.6952355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact arrays are known to be associated with antenna coupling and noise correlation. The noise can be either antenna noise, LNA noise or downstream noise. Due to these effects, it was shown that the matching network affects the performance of MIMO systems with coupled receiver antennas. Since the optimal multiport matching network is of very high complexity as well as very narrow operation bandwidth, development of single-port (SP) matching networks that boost the performance became inevitable. In this paper we develop a gradient-search algorithm to design the matching network for achievable rate maximization of multi user MIMO systems. For any combination of noise sources, we rigorously derive the exact gradient of the achievable rate with respect to the components of the matching network. We assume either full knowledge of the spatial channel or knowing its statistical properties. In the later case we optimize the matching network to maximize the Jensen's bound. Substantial performance enhancement is shown when our algorithms are used. Significant reduction in the array area is gained in comparison to the often used λ/2 antenna spacing without taking coupling into account. This can be vital for future wireless systems adopting massive MIMO arrays. Via eigenvalues distribution simulations at different SNR regimes, we show an intuitive link to the communication theory.\",\"PeriodicalId\":220393,\"journal\":{\"name\":\"2014 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2014.6952355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2014.6952355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

紧凑阵列被认为与天线耦合和噪声相关有关。噪声可以是天线噪声、LNA噪声或下游噪声。由于这些影响,研究表明匹配网络会影响接收天线耦合的MIMO系统的性能。由于最优的多端口匹配网络具有很高的复杂度和很窄的运行带宽,因此开发提高性能的单端口匹配网络成为必然。本文提出了一种梯度搜索算法来设计匹配网络,以实现多用户MIMO系统的可达速率最大化。对于任何噪声源的组合,我们严格推导出相对于匹配网络组成部分的可实现率的精确梯度。我们假设要么完全了解空间通道,要么知道它的统计特性。在后一种情况下,我们优化匹配网络以最大化詹森界。当使用我们的算法时,显示出实质性的性能增强。在不考虑耦合的情况下,与经常使用的λ/2天线间距相比,阵列面积显著减少。这对于未来采用大规模MIMO阵列的无线系统至关重要。通过在不同信噪比下的特征值分布模拟,我们展示了与通信理论的直观联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rate maximization in coupled MIMO systems: A generic algorithm for designing single-port matching networks
Compact arrays are known to be associated with antenna coupling and noise correlation. The noise can be either antenna noise, LNA noise or downstream noise. Due to these effects, it was shown that the matching network affects the performance of MIMO systems with coupled receiver antennas. Since the optimal multiport matching network is of very high complexity as well as very narrow operation bandwidth, development of single-port (SP) matching networks that boost the performance became inevitable. In this paper we develop a gradient-search algorithm to design the matching network for achievable rate maximization of multi user MIMO systems. For any combination of noise sources, we rigorously derive the exact gradient of the achievable rate with respect to the components of the matching network. We assume either full knowledge of the spatial channel or knowing its statistical properties. In the later case we optimize the matching network to maximize the Jensen's bound. Substantial performance enhancement is shown when our algorithms are used. Significant reduction in the array area is gained in comparison to the often used λ/2 antenna spacing without taking coupling into account. This can be vital for future wireless systems adopting massive MIMO arrays. Via eigenvalues distribution simulations at different SNR regimes, we show an intuitive link to the communication theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of general order selection in decentralized cognitive radio networks Performance of maximum-largest weighted delay first algorithm in long term evolution-advanced with carrier aggregation Distributed space-time codes for amplify-and-forward relaying networks Novel modulation detection scheme for underwater acoustic communication signal through short-time detailed cyclostationary features Relay selection and power allocation with minimum rate guarantees for cognitive radio systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1