住宅能源智能管理中的机器学习和数据挖掘技术综述

Hajer Salem, M. S. Mouchaweh, A. Hassine
{"title":"住宅能源智能管理中的机器学习和数据挖掘技术综述","authors":"Hajer Salem, M. S. Mouchaweh, A. Hassine","doi":"10.1109/ICMLA.2016.0195","DOIUrl":null,"url":null,"abstract":"In this paper, the different machine learning and data mining approaches used for Residential Energy Smart Management (RESM) will be discussed and classified according to some meaningful criteria. The proposed classification is an attempt to highlight the advantages and limitations of each category. Moreover, we emphasize the complementarity between approaches belonging to different categories and we point out the main challenges that still face RESM.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Review on Machine Learning and Data Mining Techniques for Residential Energy Smart Management\",\"authors\":\"Hajer Salem, M. S. Mouchaweh, A. Hassine\",\"doi\":\"10.1109/ICMLA.2016.0195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the different machine learning and data mining approaches used for Residential Energy Smart Management (RESM) will be discussed and classified according to some meaningful criteria. The proposed classification is an attempt to highlight the advantages and limitations of each category. Moreover, we emphasize the complementarity between approaches belonging to different categories and we point out the main challenges that still face RESM.\",\"PeriodicalId\":356182,\"journal\":{\"name\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2016.0195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文将讨论用于住宅能源智能管理(RESM)的不同机器学习和数据挖掘方法,并根据一些有意义的标准进行分类。提出的分类是为了突出每个类别的优点和局限性。此外,我们强调属于不同类别的方法之间的互补性,并指出RESM仍然面临的主要挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review on Machine Learning and Data Mining Techniques for Residential Energy Smart Management
In this paper, the different machine learning and data mining approaches used for Residential Energy Smart Management (RESM) will be discussed and classified according to some meaningful criteria. The proposed classification is an attempt to highlight the advantages and limitations of each category. Moreover, we emphasize the complementarity between approaches belonging to different categories and we point out the main challenges that still face RESM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prediction Modelling and Pattern Detection Approach for the First-Episode Psychosis Associated to Cannabis Use An Effective and Efficient Similarity-Matrix-Based Algorithm for Clustering Big Mobile Social Data Time Series Classification Using Time Warping Invariant Echo State Networks Improved Time Series Classification with Representation Diversity and SVM Android Malware Detection: Building Useful Representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1