b型和彩色多普勒血流显像对乳腺癌有效的计算机辅助诊断系统

Songbo Liu, Heng-Da Cheng, Yan Liu, Jianhua Huang, Yingtao Zhang, Xianglong Tang
{"title":"b型和彩色多普勒血流显像对乳腺癌有效的计算机辅助诊断系统","authors":"Songbo Liu, Heng-Da Cheng, Yan Liu, Jianhua Huang, Yingtao Zhang, Xianglong Tang","doi":"10.1109/VCIP.2013.6706400","DOIUrl":null,"url":null,"abstract":"To improve the diagnostic accuracy of breast ultrasound classification, a novel computer-aided diagnosis (CAD) system based on B-Mode and color Doppler flow imaging is proposed. Several new features are modeled and extracted from the static images and color Doppler image sequences to study blood flow characteristics. Moreover, we proposed a novel classifier ensemble strategy for obtaining the benefit of mutual compensation of classifiers with different characteristics. Experimental results demonstrate that the proposed CAD system can improve the true-positive and decrease the false positive detection rate, which is useful for reducing the unnecessary biopsy and death rate.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An effective computer aided diagnosis system using B-Mode and color Doppler flow imaging for breast cancer\",\"authors\":\"Songbo Liu, Heng-Da Cheng, Yan Liu, Jianhua Huang, Yingtao Zhang, Xianglong Tang\",\"doi\":\"10.1109/VCIP.2013.6706400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the diagnostic accuracy of breast ultrasound classification, a novel computer-aided diagnosis (CAD) system based on B-Mode and color Doppler flow imaging is proposed. Several new features are modeled and extracted from the static images and color Doppler image sequences to study blood flow characteristics. Moreover, we proposed a novel classifier ensemble strategy for obtaining the benefit of mutual compensation of classifiers with different characteristics. Experimental results demonstrate that the proposed CAD system can improve the true-positive and decrease the false positive detection rate, which is useful for reducing the unnecessary biopsy and death rate.\",\"PeriodicalId\":407080,\"journal\":{\"name\":\"2013 Visual Communications and Image Processing (VCIP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2013.6706400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提高乳腺超声分类的诊断准确性,提出了一种基于b型超声和彩色多普勒血流成像的计算机辅助诊断系统。从静态图像和彩色多普勒图像序列中建模和提取了一些新的特征来研究血流特征。此外,我们提出了一种新的分类器集成策略,以获得不同特征分类器相互补偿的好处。实验结果表明,所提出的CAD系统可以提高真阳性检出率,降低假阳性检出率,有助于减少不必要的活检和死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An effective computer aided diagnosis system using B-Mode and color Doppler flow imaging for breast cancer
To improve the diagnostic accuracy of breast ultrasound classification, a novel computer-aided diagnosis (CAD) system based on B-Mode and color Doppler flow imaging is proposed. Several new features are modeled and extracted from the static images and color Doppler image sequences to study blood flow characteristics. Moreover, we proposed a novel classifier ensemble strategy for obtaining the benefit of mutual compensation of classifiers with different characteristics. Experimental results demonstrate that the proposed CAD system can improve the true-positive and decrease the false positive detection rate, which is useful for reducing the unnecessary biopsy and death rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New motherwavelet for pattern detection in IR image Improved disparity vector derivation in 3D-HEVC Learning non-negative locality-constrained Linear Coding for human action recognition Wavelet based smoke detection method with RGB Contrast-image and shape constrain Joint image denoising using self-similarity based low-rank approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1